
The Software Fabric for the Internet of Things

Jan S. Rellermeyer1, Michael Duller1, Ken Gilmer2,
Damianos Maragkos1, Dimitrios Papageorgiou1, and Gustavo Alonso1

1 ETH Zurich, Department of Computer Science,
8092 Zurich, Switzerland,

{rellermeyer, michael.duller, alonso}@inf.ethz.ch
{dmaragko, dpapageo}@student.ethz.ch

2 Bug Labs Inc.
New York, NY 10010
ken@buglabs.net

Abstract. One of the most important challenges that need to be solved
before the “Internet of Things” becomes a reality is the lack of a scalable
model to develop and deploy applications atop such a heterogeneous
collection of ubiquitous devices. In practice, families of hardware devices
or of software platforms have intrinsic characteristics that make it very
cumbersome to write applications where arbitrary devices and platforms
interact. In this paper we explore constructing the software fabric for
the “Internet of Things” as an extension of the ideas already in use for
modular software development. In particular, we suggest to generalize
the OSGi model to turn the “Internet of Things” into a collection of
loosely coupled software modules interacting through service interfaces.
Since OSGi is Java-based, in the paper we describe how to use OSGi
concepts in other contexts and how to turn non-Java capable devices and
platforms into OSGi-like services. In doing this, the resulting software
fabric looks and feels like well known development environments and
hides the problems related to distribution and heterogeneity behind the
better understood concept of modular software design.

1 Introduction

The notion of an “Internet of Things” refers to the possibility of endowing every
day objects with the ability to identify themselves, communicate with other ob-
jects, and possibly compute. This immediately raises the possibility to exchange
information with such objects and to federate them to build complex composite
systems where the objects directly interact with each other. These composite
systems exhibit very interesting properties and can have a wide range of appli-
cations. Yet, they are complex to develop, build, and maintain in spite of the
purported spontaneity of the interactions between the objects. A crucial reason
for these difficulties is the lack of a common software fabric underlying the “In-
ternet of Things”, i.e., the lack of a model of how the software in these different
objects can be combined to build larger, composite systems.
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The problem in itself is neither new nor restricted to pervasive computing.
For instance, a great deal of effort has been invested in the last decades to
develop concepts for modular software design. There, the problem is how to build
a coherent application out of a possibly large collection of unrelated software
modules. Conceptually, it is intriguing to consider the problem of building the
software fabric for the “Internet of Things” as another version of the problem of
modular software design. Both problems are closely related, in spite of addressing
different contexts, and being able to establish a connection between them will
mean that we can bring all the experiences and tools available for one to bear
on the other.

This is the premise that we pursue in this paper. We start from OSGi [1], a
standard specification for the design and management of Java software modules.
Despite its recent success for server-side application, OSGi was originally devel-
oped for managing software modules in embedded systems. Taking advantage
of recent developments that have extended OSGi to distributed environments
(R-OSGi [2]), we show how to turn small and ubiquitous devices into OSGi-like
services.

Many aspects of the OSGi and R-OSGi model are perfectly matching the
requirements of applications on the “Internet of Things”. First, the devices in-
volved in these networks form a heterogeneous set. Different hardware platforms
and operating systems are available on the market and in use. The abstractions
provided by the Java VM dramatically simplify the development of software for
these devices. Furthermore, ubiquitous networks often involve a large quantity of
devices that have to be managed by the user. The module lifecycle management
of OSGi allows to consistently update software modules among all devices.

However, these devices are highly resource-constrained and thus often unable
to run a Java virtual machine. They also often lack a TCP/IP interface and use
other, less expensive communication protocols (e.g., Bluetooth [3], ZigBee [4]).
To accommodate these characteristics, in the paper we describe extensions to
R-OSGi that:

– make communications to and from services independent of the transport
protocol (in the paper we show this with Bluetooth and 802.15.4 [5]),

– implement an OSGi-like interface that does not require standard Java or
no Java at all (in the paper we demonstrate this for CLDC [6], embedded
Linux, and TinyOS [7]), and

– support arbitrary data streams to and from services.

Through these contributions, the resulting fabric for the “Internet of Things”
can be treated and manipulated as an OSGi framework that is also applicable to
small devices, alternative transport protocols, and non-Java applications. This
means that we can treat devices as composable services with a standard in-
terface, services can be discovered at runtime and changed dynamically, data
exchanges can use the Java types even for non-Java applications, and failures
can be masked behind service withdrawal events. Application developers see a
collection of software modules with a homogeneous interface rather than a col-
lection of devices. In the paper we give an example of an extensible hardware
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platform – commercially available – where each hardware module is treated as an
OSGi module, thereby proving the feasibility of the premise that we are pursuing
in this paper.

The paper is organized as follows. In Section 2, we review the main ideas
behind OSGi and motivate our approach. In Section 3, we discuss how to make
OSGi frameworks independent of the transport protocol. In Section 4, we de-
scribe how to provide OSGi-like services on platforms either running reduced
versions of the JVM, programmed in languages others than Java, or lacking a
full-fledged operating system. In Section 5, we present an extension to R-OSGi
to support data streams. In Section 6, we describe how all these extensions make
the OSGi model general enough to become the software fabric for the “Internet
of Things”.

2 Background on OSGi and Motivation

2.1 The OSGi Model

OSGi [1] is an open standard for developing and managing modular Java applica-
tions. Efforts around OSGi are driven by the OSGi Alliance, with contributions
from software manufacturers like IBM, BEA, or Oracle, as well as device ven-
dors like Nokia, Siemens, or Bosch. OSGi is already in use in a wide range of
systems (including the development environment Eclipse, but also in embedded
systems such as those in the BMW 3 series car).

In OSGi, software modules are called bundles. Bundles can export pack-
ages and import shared packages of other bundles. The runtime of OSGi (called
framework) handles the dependencies between the bundles and allows the active
control of every bundle’s lifecycle. Each bundle is loaded through a separate Java
classloader and shared code is handled by a delegation model. It is possible to
extend an application by installing new bundles at runtime as well as updating
existing bundles or unloading them. To avoid link-level dependencies between
code of bundles, which would limit the flexibility of a modular architecture, OSGi
provides a service abstraction. A service is an ordinary Java object which is pub-
lished to the framework’s service registry under the names of the interfaces it
implements. Additionally, a service can be described in more detail by attaching
properties to the service’s registration. These properties can also be dynamic,
i.e., change at runtime. Other bundles can make use of services by requesting
the implementation from the framework. Since service clients only have to know
the interface but not the actual implementation, this leads to a loose coupling
of the bundles. Use of services relies on common, published interfaces but the
implementation of each service remains a black box. It is, thus, possible to ex-
change the implementation of a service at runtime. It is also possible to have
several alternative implementations of a service which can then be matched at
a finer level through the use of properties.

Existing OSGi frameworks include commercial implementations such as IBM’s
SMF [8] as well as open source projects such as Eclipse Equinox [9], Apache
Felix [10], Concierge [11], or Knopflerfish [12].
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Fig. 1. The Bug with several modules

2.2 Example: The BUG Platform

One can question the wisdom of trying to generalize OSGi beyond module man-
agement in a centralized setting. However, this has been done already and quite
successfully. An example of a commercial device which internally uses OSGi to
utilize modular hardware is the Bug (Figure 1), developed by the New York
based company Bug Labs Inc. The device consists of a base unit (computer)
and hardware modules that allow the system to be extended. The base unit is
a handheld ARM-based GNU/Linux computer that runs the Concierge OSGi
framework on a CDC VM.

A primary feature of Bug is that it’s expandable. A dedicated 4-port bus
known as the Bug Module Interface (BMI), allows external devices (hardware
modules) to interface with the base unit. The BMI interface is hot pluggable
both in hardware and software, meaning that modules can be added to and re-
moved from the base unit without restarting the computer or manually managing
applications that depend on specific modules. The BMI interface is comprised
of eight standard interfaces such as USB, SPI, and GPIO which are all avail-
able through each connector. Each hardware module exposes via OSGi a set of
services that local or remote applications can utilize.

At the software level, BMI behaves like any other hot-pluggable bus, such as
PCI and SB. Hardware modules can be added to and removed from the Bug base
unit without restarting the device. Based on what modules are connected, OSGi
services are available that can be utilized by local and remote OSGi-based appli-
cations. Some examples of hardware modules are LCD screen, barcode scanner,
weather station, and motion detector.
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In a way, the Bug device can be considered as a physical actualization of
the OSGi service model: each hardware module contains devices that, when con-
nected to a base unit, register themselves within the OSGi runtime as a service.
When a user attaches a hardware module to the base unit, one or more hardware
service bundles are started in the OSGi runtime, in addition to any application
bundles that depend on those services. Similarly, when modules are removed, the
same bundles are removed from the system. Since OSGi was designed to support
dynamic services, applications written for Bug work seamlessly with the highly
variable nature of the hardware.

The Bug implements the idea of a service-oriented platform for a collection
of hardware devices plugged to each other. The vision we want to articulate
in this paper is one in which OSGi plays a similar role but in the context of
the ”Internet of Things” rather than for hardware modules. In order to do this,
however, OSGi needs to be extended in several ways. First, it has to be able
to support distributed applications which the current specification does not [2].
Second, a framework is needed capable of running on small devices, something
that only a few of the existing frameworks can do but at a considerable perfor-
mance penalty [11]. These two points have been covered by recent developments
(see the remainder of this section). From the next section on, we tackle the rest
of the necessary extensions to make the OSGi model suitable for the “Internet
of Things”: making the distribution protocol independent, removing the depen-
dency on a regular Java Virtual Machine, removing the dependency on Java
altogether, and extending it to support continuous media streams.

2.3 R-OSGi

OSGi can only be effectively used in centralized setups where all bundles and
services reside within the same Java Virtual Machine. Not only the dependency
handling requires all modules to reside on the same machine, the service registry
is a centralized construct that is not designed for distribution.

R-OSGi [2] is an open source project designed to address these limitation and
provide a distributed version of the OSGi model. In R-OSGi, service information
is registered with a network service discovery protocol so that a node can locate
services residing on other nodes. The original implementation of R-OSGi was
targeting TCP/IP networks and used RFC 2608, the Service Location Pro-
tocol (SLP) [13, 14]. The notion of services in OSGi and SLP are very close to
each other and SLP can run in both managed networks where a Directory Agent
acts as a central service broker, and in unmanaged networks by using multicast
discovery. The connection between two applications through an R-OSGi service
is called a network channel. To access remote services, R-OSGi generates a dy-
namic proxy for the service on the caller’s side, which makes the service look
like a local service. The proxy itself is implemented as an ordinary OSGi bundle.
To deal with dependencies, R-OSGi determines the minimal set of classes which
are required to make the service interface resolvable. Those classes from this set
that do not belong to the VM classpath are additionally transmitted to the client
and injected into the proxy bundle. Method calls from the proxy to the remote
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service are executed by exchanging appropriate messages between the R-OSGi
instances running in the proxy’s framework and running in the remote service’s
framework. Arguments to the remote method are serialized at the caller’s site
and sent with the call request. At the callee’s site the arguments are deserial-
ized again and the method is invoked with the deserialized arguments. If the
method returns a return value, the value is serialized and sent to the caller’s site
together with the acknowledgment of the successful method invocation. Finally,
the return value is deserialized at the caller’s site and returned to the proxy.

In addition to method calls to the remote services, R-OSGi also transparently
supports event-based interaction between services as specified in OSGi’s Event
Admin service specification [1].

R-OSGi can be effectively used to build applications from a federation of
distributed services. However, it works only with TCP/IP and requires a (at
least J2ME CDC compliant) Java VM with an OSGi framework implementation.
Finally, R-OSGi has no support for data streams such as those produced by, for
instance, RFID readers. Thus, it is not suitable for the applications we have
in mind as part of the “Internet of Things”. In what follows we show how this
general model we have just described (starting from R-OSGi) can be extended
so as to build the underlying software fabric for the ”Internet of Things”.

3 Extending R-OSGi to other Transport Protocols

The current Internet is based on TCP/IP both for wired and wireless communi-
cation (802.11 wireless LAN). In contrast, the “Internet of Things” often involves
communication over low-power, short-range networks such as Bluetooth [3] or
ZigBee [4]. R-OSGi, however, is limited to TCP/IP and not suited well for the
context of the “Internet of Things”. Thus we have modified R-OSGi, which is
available as open source, to make it independent of the underlying transport pro-
tocol. We do this by describing the necessary extensions to support Bluetooth
and 802.15.4 protocols.

There are two design properties that prevent R-OSGi to be effectively used
with transports others than TCP/IP. First, the SLP service discovery is an
integral part of R-OSGi and pervades all the layers. For instance, remote services
are identified by their SLP service URL. The SLP protocol, however, is tightly
bound to IP networks. Second, the network channel model [2] of R-OSGi allows
to plug in alternative transports for outgoing communication but the acceptor for
incoming connections only supports TCP/IP sockets. In the model of R-OSGi,
it is assumed that alternative transports would bridge to TCP over local loop,
like the HTTP transport provided by R-OSGi. This approach works for desktop
computers with powerful and versatile operating systems but is unfeasible for
ubiquitous devices communicating over Bluetooth or ZigBee.

3.1 Bluetooth Transport

To support R-OSGi services over Bluetooth radios, we need to separate the
service identifier from the underlying transport. Hence, instead of SLP service
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URLs, we use opaque URIs. The URI of a service can use any schema and
thereby identify which transport implementation it requires. By doing this, the
address of a service now also contains information on the transport protocol
it supports. For instance, the URI of a service accessible through TCP/IP can
be: r-osgi://some.host#21. The network channel through which the service can
be accessed is identified by the URI’s schema, host, and port components (if
differing from the default port). The fragment part of the URI describes the
local identifier that the service has on the other node. The same service through
Bluetooth transport would be, e.g., btspp://0010DCE96CB8:1#21.

Bluetooth [3] is a network solution covering the lower five layers of the OSI
model [15]. In our implementation we use RFCOMM, which provides a reliable
end-to-end connection, as transport protocol. We modified the channel model of
R-OSGi so that every implementation of a transport protocol that can accept
incoming connections can natively create and register a channel endpoint for
them. Thus, messages received via Bluetooth do not have to be bridged over
TCP but can be processed directly by the corresponding channel endpoint.

To evaluate the performance of the Bluetooth implementation, we tested the
system with the JavaParty benchmark. The JavaParty benchmark was originally
developed by the University of Karlsruhe as part of the JavaParty [16] project to
test the performance of an alternative RMI implementation. In the OSGi version
of the benchmark, a test client calls different methods of a remote service with
arguments of increasing size. Figure 2 shows the results of the benchmark on
Bluetooth, compared to the baseline (first column), which is an ICMP ping over
Bluetooth PAN. The invocation of the void method with no arguments takes
only slightly more time than the ICMP ping. This shows that R-OSGi adds little
overhead. Furthermore, when the size of the arguments increases, the invocation
times scales relative to the size of the arguments.
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3.2 Bluetooth Service Discovery

R-OSGi supports service discovery through SLP but only over an IP-based net-
work transport. We have changed service discovery to make it an orthogonal
concern. SLP discovery is still supported in the form of a separate and optional
service that gives hints to the application when certain services are found. Al-
ternative discovery protocols can now be used as well since the service discovery
operates behind a common discovery handler interface that is not restricted to
SLP. To match the Bluetooth transport we implemented a corresponding discov-
ery handler, which offers Bluetooth service discovery via Bluetooth’s own Service
Discovery Protocol (SDP) [3].

A major challenge of the OSGi service discovery with SDP is the granularity
mismatch. In the Bluetooth service model, R-OSGi itself is the Bluetooth service
and the OSGi services it offers are conceptually subentities of the R-OSGi service.
However, SDP has no notion of service hierarchy. Furthermore, SDP is very
limited in the way how services can be described, which leaves a gap between
Bluetooth services and OSGi services. SDP supports queries only on UUIDs
(Universally Unique Identifiers) [17] whereas OSGi allows semantically rich and
complex LDAP filter strings [18]. In addition, SDP data types do not suffice to
express the properties of OSGi services. This can lead to problems when selecting
services as the limited expressibility in SDP will result in many more services
answering a request than is necessary.
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Attributes
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Block 1

Block n
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Fig. 3. SDP Service Record for R-OSGi Services

To provide OSGi-like service discovery over Bluetooth, we keep track of ser-
vices that are marked to be remotely accessible through SDP. The most common
form of service filter involves the service interfaces. In order to support searches
similar to those in OSGi, the UUID of every service interface is adapted so that
filters over service interfaces can be expressed as SDP service searches over the
corresponding UUID. In our implementation, the UUID is a hash over the in-
terface name. For each service, the serialized properties are stored as sequences
of bytes in the service record. These properties are retrieved lazily and only if a
filter expression poses constraints over these particular properties. A modifica-
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tion time-stamp indicates the version of the properties so that clients can cache
them for future filters and easily check if the cached version is still valid. A hash
value over all service blocks is used to detect if new services were added or some
were removed since the last search. Through this structure, OSGi services can
be fully described directly in the Bluetooth service discovery mechanisms.

3.3 802.15.4 Transport

The IEEE 802.15.4 standard [5] defines PHY and MAC layers for short range,
low power radios. 802.15.4 is the basis for the lower layers of ZigBee [4], which
represents a full network solution including upper layers not defined by the
802.15.4 standard.

In contrast to TCP/IP and Bluetooth, 802.15.4 only defines the lowest two
layers of the OSI model and thus does not provide a reliable transport on its own.
While ZigBee would provide the missing layers and reliable transport, we wanted
a more lightweight solution that can even run on, e.g., TinyOS powered devices.
Hence, we have implemented a simple transport layer similar to TCP that uses
acknowledgments, timeouts, and retransmissions to provide reliable end-to-end
communication on top of 802.15.4. Our implementation of the transport layer
represents a proof of concept only as we did not optimize it in any way. Reli-
able transport over packet oriented lower layers is a research topic on its own
and we will eventually exchange our implementation with a more sophisticated
algorithm tailored to the characteristics of 802.15.4 radios.

Atop of this transport we implemented an 802.15.4 network channel for R-
OSGi, similar to the implementation for Bluetooth. Since the message format
used is compatible to TinyOS’ active messages, the URI schema for this transport
is tos. An example of a URI for this transport is tos://100#5 with tos being the
schema, 100 an example for a node address, and 5 being the service identifier
on the peer. The transport behaves like Bluetooth or TCP transports. Once a
connection of the underlying layer is detected, a logical R-OSGi channel to this
peer is established over the connection and message exchange can start.

4 OSGi-like Services on non-standard Java

One obvious limitation of the R-OSGi implementation is that it requires at least
a Java CDC VM and an OSGi framework to run on the participating nodes.
For small devices, we had to address this issue and come up with solutions
for devices with limited computation power and resources. This also includes
embedded systems on microcontroller architectures with no Java VM and limited
operating system support.

When two R-OSGi peers establish a connection they exchange a list of the
services they provide. Each entry in this list comprises the names of the in-
terfaces that the service implements and its properties. When a caller invokes a
remote service, the instance of R-OSGi on the callee side sends the full interfaces
including all methods to the caller. On the caller, a proxy that implements the
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interfaces of the remote service is built on the fly and registered with the local
OSGi framework like other local services. We exploit the fact that the service
is created and registered as a local proxy service on the caller side to hide non-
OSGi services behind an OSGi-like interface. The bridging between the caller –
which must be a full OSGi framework – and the callee is done at the proxy.

The first platform we adapt to running OSGi is the Java CLDC [6]. It lacks
certain properties that are required for running OSGi, for instance, user-defined
classloading. The second platform we adapt are embedded Linux devices running
services written in C or C++, thereby removing the dependency on Java. Finally,
the third implementation works on top of TinyOS running on Tmote Sky [19]
nodes featuring 10kB of RAM and 48kB of code storage, thus removing the
dependency on a full fledged operating system.

4.1 CLDC

CLDC is the smallest version of the Java Virtual Machine. It ships with almost
every mobile phone and is also used on embedded devices with very little re-
sources (minimum requirements are 160kB non-volatile memory as storage and
32kB volatile RAM). The VM for CLDC is hence called the Kilobyte Virtual
Machine (KVM) [6]. On top of the VM, different profiles can run. The profile
defines which subset of the standard Java classes is available, which CLDC-
specific classes are provided, and which packages can be optionally included. For
instance, the MIDP [20] profile is the most widespread on mobile phones and
allows to run applications packages as MIDlets.

The reason why OSGi does not run on CLDC devices is mainly the sandbox
model in the underlying KVM. For instance, in the MIDP profile, MIDlets cannot
access code of other MIDlets and no new classes can be loaded that are not part
of the MIDlet itself. For such devices, we locally run an adapter that understands
the R-OSGi protocol and communicates with the local services.

The adapter is implemented as a single MIDlet that contains a stripped-down
implementation of the R-OSGi protocol (since it only needs to deal with incom-
ing calls) and the services that the device offers. Since the KVM does not support
reflection, the dispatching of remote service invocation calls to the service meth-
ods has to be done explicitly. A further limitation of the KVM is the missing
Java serialization. This is a severe limitation because not only the arguments of
service methods might involve complex Java objects, also the R-OSGi protocol
itself has some messages that ship reference types, for instance, the properties
of the service. The solution to the problem is to generate custom serialization
and deserialization methods for every used complex type ahead of time when the
MIDlet is assembled. The generation procedure uses bytecode analysis to inspect
the classes and generates a serialization for every complex type used in a service
interface. Since the arguments of service methods are known at the time where
the MIDlet is generated, arbitrary types can be serialized. Also the customized
method calls are generated at build-time so that the service does not have to be
changed in order to run on CLDC. Clearly, the statically assembled MIDlet does
not support all features that an OSGi service running on a framework supports.



11

Although it is possible to enable and disable services through a management
service, the update of a single service requires an update of the whole MIDlet.

4.2 Embedded Linux

Supporting services written in languages other than Java is mainly a problem of
adapting the data types. OSGi, that is Java, allows to use very expressive classes
which cannot be easily transformed to other languages. The usual way to invoke
native code from Java code is through the Java Native Interface (JNI) [21], an
interface that exposes an API that can be used to create and access objects and
to invoke methods.

In the R-OSGi C/C++ implementation, we developed a stand alone library
(JNI Runtime) that implements the JNI interface but without actually being
a Java VM (Figure 4). The JNI runtime library does not have the overhead
of interpreting any Java bytecode and operating on a virtual stack machine.
Instead, it implements only the JNIEnv which is normally the handle to the JNI
interface of a Java VM. The runtime library maintains internal data structures
for classes, fields, methods, and object instances. Methods are implemented by C
functions operating on the data structures. Common classes like java.lang.String
or java.lang.Integer are already implemented and part of the library. Service
implementations can register new models of Java classes through an extension
mechanism, if they require other classes.

With the help of the runtime, JNI code can run without a Java VM. The
R-OSGi protocol is implemented in the R-OSGi daemon. The daemon accepts
incoming TCP/IP connections and handles the requests. It is possible to imple-
ment R-OSGi daemons for different transports as well. JNI service implementa-
tions are registered with the R-OSGi daemon through a configuration file. In this
file, the developer also has to specify the location of a Java interface implementa-
tion of the service. This interface is not used for the execution of the JNI service
but only as a static resource exchanged in the R-OSGi protocol. Furthermore,
the daemon also implements the Java serialization mechanism. If the class of an
incoming object is known to the JNI runtime (either by default or provided by

JNI Interface

Java Service Interface Service Functions

JNI Runtime

Service (shared library)

Runtime (shared library)

R−OSGi Daemon Serialization 

Protocol Handler

Service Registry

Fig. 4. R-OSGi for Native Code Services
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the service), the R-OSGi daemon can create a corresponding instance in the JNI
runtime which can then be used by the service implementation in the same way
a corresponding Java class inside a VM would be used. Hence, arguments for
service calls can be deserialized (and return values serialized again) to preserve
the full expressiveness of Java/OSGi but without the overhead of a Java VM.

To quantify the performance of our solution, we again use the JavaParty
benchmarks. The first series of measurements were taken on two Linux note-
books using Java 5. Figure 5 shows that the native implementation of R-OSGi is
slightly faster in some cases but no significant performance gains can be observed.
This can be expected since the limiting factor on devices with huge resources
is the network bandwidth and not the processing. Furthermore, the HotSpot
VM benefits from just-in-time compilation. The picture changes when the same
experiment is repeated on a Linksys NSLU2, an embedded Linux device with a
133 MHz Intel XScale IPX420 CPU (Figure 6). This time, a JamVM [22] is used
as a reference. The native R-OSGi implementation performs significantly better
than the interpreting VM in all cases. Even the call with 32kB of arguments
completes in less than 20ms.

4.3 TinyOS

Our implementation of R-OSGi services for TinyOS [7] is based on the 802.15.4
transport presented in the preceding section and, like all TinyOS applications,
implemented in NesC [23]. NesC adds the concept of components, interfaces, and
wiring of components to the C programming language. A TinyOS application
consists of several components that are wired together. TinyOS provides a collec-
tion of ready to use components, mainly hardware drivers. The Tmote sky nodes
implement the TelosB [24] platform of TinyOS and all hardware components
that this platform is composed of are supported in the current TinyOS release
2.0.2. Therefore and because of previous experience with Tmote sky nodes and
TinyOS, we chose to implement R-OSGi services for sensor nodes using TinyOS.
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Fig. 6. Javaparty Benchmark on the Slug

Conceptually, this implementation is more similar to the implementation for
CLDC than the implementation for embedded Linux, despite the fact that NesC
is just an extension of C and the programming languages are thus very similar.
Dynamic loading of shared libraries is not available on TinyOS and resources are
very limited. Additionally, the capabilities and therefore the services provided by
a sensor node are usually static. Therefore, the approach of emulating a full JNI
environment is not feasible for sensor nodes and TinyOS. We rather compose the
services provided by the sensor node at build time, like the MIDlet for CLDC,
and also include the appropriate interfaces and data types in advance.

The R-OSGi application for TinyOS uses the 802.15.4 transport to listen for
incoming connections. When a connection is established, the application com-
poses the lease message containing the interfaces and properties of all services
available by collecting the data from the installed services. Services implement
our (NesC) Service interface which provides commands for getting the serialized
(Java) service interfaces, getting the serialized, built-in properties of the service,
and executing a method on the service. Furthermore, it defines an event that
will be signaled upon completion of the method invocation. This way it is easily
possible to have multiple, different services installed in one node as they can be
managed uniformly by the R-OSGi application. A configuration file that is used
at compile time defines the services that are available on the node.

When a remote R-OSGi peer invokes a method, the R-OSGi application
dispatches the call to the correct service by invoking its invoke command with
the signature of the method and the serialized method arguments as arguments.
The service then dispatches the invocation internally according to the signature.
For example, a temperature service might offer getRaw() as well as getCelsius()
and getFahrenheit(). The invocation is implemented as split-phase operation.
Once the invocation has completed, invokeDone is signaled and the return value
passed as argument. The serialized return value is then sent to the calling peer
as response to the invocation of the method. To deserialize the arguments and
serialize the return value, services use our Serializer component.
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5 Supporting Streaming Data Services

R-OSGi was designed for remote method invocation which corresponds to a
conventional request-response interaction. However, many small and ubiquitous
devices only deliver or consume data streams, e.g., a sensor node that periodically
reports the temperature. Also services offered by more powerful devices can
require the exchange of streaming data, e.g., a CCTV camera.

Typically, exchange of streaming data in Java is implemented using instances
of InputStream and OutputStream of the java.io package and its subclasses.
In the case of interaction through services, the service returns an instance of
a stream to the client and data is then transmitted between the service and
the client through the stream. However, plain remote method invocation is not
sufficient to transparently remote these services. A stream object is backed by
a file, a buffer, or a network channel. When it is returned to a remote client,
it has to be serialized and the backing is lost. Therefore, plain service remoting
with method invocation is not sufficient to deliver streaming data produced or
consumed by many ubiquitous devices. We present an extension to R-OGSi that
transparently supports streams. We also discuss quality of service issues related
to streaming data.

5.1 Transparent Streams on Java

To allow for transparent remote access to streams we make R-OSGi stream
aware by intercepting the exchange of stream objects and introducing a separate
mechanism for exchanging data remotely over streams.

When R-OSGi executes a remote method call that returns an instance of
InputStream or OutputStream, this instance is replaced by a handle in the result
message that is sent to the calling peer. There the handle is used to create a proxy
that extends InputStream or OutputStream and this proxy is returned as result
to the method invocation. Likewise, instances of InputStream or OutputStream
that are passed as arguments to remote method calls are replaced with handles
and represented by stream proxies in the same way.

Calls to the stream proxy will be converted to R-OSGi stream request mes-
sages which will be parsed and result in respective calls to the actual stream.
The data returned (in case of input streams) is sent back as R-OSGi stream
result messages and returned to the read call to the stream proxy.

This mechanism allows to transparently exchange and use streams that are
per se not serializable. Stream proxies look and feel like any input or output
stream and thus can be used like any input or output stream, e.g., attaching
a buffered stream or an object stream. Furthermore, the overhead of stream
request and stream result messages is even less than the already low overhead of
method invocation messages. This provides the best possible performance which
is crucial as streams are often used to continuously transmit significant amounts
of data compared to method invocation which occurs sporadically and usually
with a small argument size.
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5.2 Streams on non-OSGi Devices

Similarly to the implementation of OSGi-like services in devices without OSGi,
we provide support for data streaming in such devices through the adapters.

CLDC already supports InputStream and OutputStream types. The R-OSGi
adapter for CLDC simply replaces instances of streams with handles in the same
way R-OSGi does. Incoming stream request messages result in calls to the actual
stream and the data returned is sent back as stream result messages. The same
applies for embedded Linux platforms with the only difference that the stream,
like every other object, is implemented in JNI instead of Java.

For TinyOS, the Service interface is extended with two additional commands
and two additional events for reading from and writing to streams. When a
TinyOS service returns a serialized stream handle as result, it also passes a local
handle to the R-OSGi adapter. This handle will be passed back to the service’s
commands for reading and writing when a stream request message arrives. The
service then dispatches the request internally. Once data has become available
(in case of input streams) or been processed (in case of output streams), the
corresponding events are signaled and the result is passed as argument. The
result is then sent to the service caller as response.

5.3 Quality of Service

The possibility to stream large amounts of data requires careful considerations
of the possible impact on the whole system. R-OSGi maintains one communi-
cations channel to every remote host it is connected to. Through this channel
all communication takes place in the form of messages. The data exchanged by
streams is transmitted in stream request and stream result messages which are
exchanged over the same communication channel over which all other messages
like method invocation or lease renewal are exchanged.

To ensure correct and smooth operation of R-OSGi, messages of other types
are prioritized over stream request and stream result messages to avoid clogging
of the communication channel by a burst of stream messages. On the other hand,
R-OSGi-aware applications can choose to prioritize traffic of specific streams over
other streams or even over the other message types. This is useful for real-time
streams like, e.g., audio or video streams, which are in general more time-critical
than method invocations.

6 Discussion

OSGi simplifies constructing applications out of independent software modules.
Moreover, it provides facilities for dynamically managing the insertion and with-
drawal of software modules, keeping track of the dependencies between modules,
enforcing dependencies, and interaction through loosely-coupled service inter-
faces. With the extensions to R-OSGi that we have just presented, we have
a software fabric for the “Internet of Things” that gives us exactly the same
features but for distributed applications residing in heterogeneous devices.
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Having this support implies, for instance, that spontaneous interactions be-
tween two appliances become service invocations within a distributed OSGi
framework. Switching one of the appliances off appears as a module withdrawal
and the framework – the software fabric – handles the cleanup of all dependencies
and informing users of this service. It is also possible to dynamically replace the
implementation of a service, or even the device itself, without the caller being
aware of the swap.

Service discovery can be made more precise and efficient by using the filters
provided by OSGi. That way, the amount of information exchanged during a
spontaneous interaction can be minimized, an important factor when communi-
cation is through a low bandwidth radio link. The same mechanism is helpful
to prevent that, when several devices are present, all of them have to reply to
indiscriminate broadcast looking for services.

In the software fabric we just described, all devices independently of language,
platform, or size present a uniform frontend which makes developing applications
far easier than when programmers have to cope with a wide range of technologies
and paradigms. It is also important to note that this common frontend does
not reduce the exchanges to the minimum common functionality of all devices
involved. Finally, note that this common frontend and standardized interfaces
apply not only to software but, as the example with the Bug illustrates, also to
hardware.

We are not aware of any other solution of the many that have been proposed
that is capable of bridging heterogeneity as well as the software fabric we propose.
In particular, with the very low overhead that it introduces.

7 Related Work

The idea of constructing distributed systems out of cooperating services has
been pioneered by the Jini [25, 26] project. In Jini, every Java object can be
a service. The information about the services around is maintained by a cen-
tral Lookup Server which has to be initially discovered by each peer in order to
communicate. The later communication between services is point-to-point and
does not require the lookup server any more. Jini does not pose restrictions on
the protocol that this device to device communication follows. However, since
Sun’s standard implementation of Jini uses RMI for the communication be-
tween devices and the lookup server, most applications use RMI also for the
device interactions. Although spontaneity was one of the main goals of Jini, the
requirement of a lookup server restricts the applications of Jini to networks with
some management. In contrast, the approach presented in this paper does not
require a central component and also works in opportunistic networks with no
management, such as ad-hoc networks. This is crucial for applications around
the “Internet of Things”, where interaction is often driven by the momentum of
opportunity. Furthermore, Jini is tailored to TCP/IP networks and cannot be
easily run over other transports.
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Other projects that are discussing how to contruct applications from cooper-
ating services and provide specifications for design and interaction of these are
ODP [27], CORBA [28], and DCE [29].

For consumer devices, UPnP [30] is a standard for discovering and interact-
ing with equipment. UPnP is able to discover new devices through the multicast
protocol SSDP [31] and even includes an addressing schema derived from Ze-
roconf [32, 33] for networks where no infrastructure is available which assigns
IP addresses. Devices and services are described by XML descriptors which can
be used to select devices and services based on fine-granular properties. The
communication between devices uses SOAP-based XML-RPC. Since SOAP can
basically run over any transport, UPnP is technically not restricted to TCP/IP
networks. However, the high verbosity of the XML involved requires networks
with sufficient bandwidth and limits the feasibility for low-power communica-
tion. Furthermore, UPnP limits the arguments of calls to a small set of specified
types. General type mappers for complex objects as known from web services
are not supported.

Recently, the idea of Service Oriented Device Architecture (SODA [34]) has
gained momentum. SODA tries to incorporate principles of SOA into the world
of devices to facilitate their integration into enterprise systems. The work pre-
sented in this paper can be seen as an implementation of this idea. Instead of an
enterprise bus based on web services, OSGi and R-OSGi are used for the com-
munication between services on devices. Since the R-OSGi protocol is far more
lightweight than web services, it appears to be more amenable to implement the
“Internet of Things” in resource constrained devices.

8 Conclusions

In this paper we have outlined a software fabric for the “Internet of Things” that
is based on the ideas borrowed from the field of modular software design. The
next steps we intend to pursue include developing applications on this fabric to
better test its properties, continue extending the fabric to encompass a wider
range of devices and protocols, developing tools that will simplify the develop-
ment of applications that federate collections of services provided by ubiquitous
devices, and explore bridging of heterogeneous network architectures as well as
multi-hop scenarios in general.
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