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Abstract

Cloud computing faces many of the challenges and diffi-
culties of distributed and parallel software. While the ser-
vice interface hides the actual application from the remote
user, the application developer still needs to come to terms
with distributed software that needs to run on dynamic clus-
ters and operate under a wide range of configurations. In
this paper, we outline our vision of a model and runtime
platform for the development, deployment, and manage-
ment of software applications on the cloud. Our basic idea
is to turn the notion of software module into a first class en-
tity used for management and distribution that can be au-
tonomously managed by the underlying software fabric of
the cloud. In the paper we present our model, outline an
initial implementation, and describe a first application de-
veloped using the ideas presented in the paper.

1. Introduction

CLouD COMPUTING is used to refer to many different
technologies: from outsourcing of information processing
to the usage of external data centers. Existing cloud ser-
vices range from virtualized server environments such as
AMAZON EC2 [13] to mash-up platforms for external ser-
vices such as YAHOO PIPES [15]. Regardless of the specific
definition used, the underlying software fabric for cloud
computing is not new: cloud computing is typically im-
plemented as a distributed or parallel application running
on a virtualized cluster of computers. As such, cloud com-
puting software suffers from the same problems that plague
traditional distributed and parallel software, i.e., they are
complex to design, develop, test, deploy, and manage. To
make the vision of pervasive cloud computing a reality be-
yond simple services, powerful and sound application mod-
els are needed to simplify the development and operation
of the software behind the functionality implemented in the
cloud. Such models only exist for specific problems and are
restricted to very narrow forms of data processing, e.g., pro-

cessing of parallelizable batch jobs [2, 5] or data storage [1].

In this paper, we outline our vision of a unified applica-
tion model for cloud computing software. Our model ex-
ploits conventional software modularity to define the enti-
ties that will compose the distributed application and uses
an underlying runtime module management platform to
hide most of the complexity of the distributed application
form the programmer. The model supports the develop-
ment and testing of applications on a single machine with,
e.g., network communication being transparently added by
the software fabric when the application is deployed to the
cloud.

In this short paper, we outline the model and describe
a first implementation based on OSGi [7], the dynamic
module system for Java. Through examples, we show that
the model is independent of the programming language
and runtime. Finally, we demonstrate the feasibility of
our approach and the potential for the model by present-
ing XTREAM, a personal stream management system for
the cloud implemented using the model and ideas described
in the paper.

2. Modularity as the Basis for Distribution

Cloud computing is still hampered by the lack of a proper
methodology for developing suitable software and faces
many of the challenges of distributed and parallel software.
For instance, the initial challenge is to divide the applica-
tion into units that can be deployed in a distributed setting.
Often this is done using tiers as in conventional multi-tiered
applications. Unfortunately, there are few design rules or
even tools to help in the design of such systems. In real-
ity, each tier is also a distributed application in itself (e.g.,
an application server), making the problem even more com-
plicated. In particular, when the underlying problem is not
trivially parallelizable, there are many possible designs and
the implications of each one are hard to predict. This prob-
lem is composed by the fact that commodity middleware
platforms are invasive against the application code: com-
munication with remote entities is typically explicit and in-



tertwined with the application code. As a consequence, de-
bugging such applications is hard and testing tends to be-
come both time-intensive as well as expensive.

Our vision for cloud computing software is to provide
the means to build cloud applications ignoring the fact that
the final deployment will be distributed. To do so, we pro-
pose to use the widely accepted notion of software module
as the unit of management and distribution and let a mod-
ule management platform deal with the complexity of dis-
tributed deployment, execution, and maintenance.

Modules are units of encapsulation. Separating the code
into modules encourages the developer to define interfaces
and thereby to shape coupling and cohesion of the code.
Cohesion means that all the functions of a module should
ideally be closely related so that the resulting module en-
capsulates common functionality. This functionality is ide-
ally only exported to other modules through a narrow set of
interfaces to avoid coupling. Coupling means that one mod-
ule depends on internal implementation details of a second
module. Tight coupling is not only a burden for code evolu-
tion but also for reusing modules in a different application
context. It also makes distributed deployment and mainte-
nance very complex and unmanageable for large systems.

In cloud computing, however, it is very important to be
able to reuse pieces of software as services. If both high
cohesion and loose coupling can be achieved, the result-
ing code base can be treated as a collection of independent
modules communicating through service interfaces, with
the communication being managed by an underlying run-
time platform.

Designing modular applications is easier than designing
distributed applications. The design principles of modules
are much better understood [8, 14] and are by now common
programming practice. However, structuring the code base
into modules does not automatically make a well-structured
system. Module systems which require explicit statement
of dependencies make the design process more manageable
and controllable. The application can be developed using all
the standard tools available for centralized, monolithic ap-
plications. Most importantly, the application can be tested
in isolation and on a single machine, enabling agile and it-
erative development techniques, which are generally much
harder to use for distributed software. As a further advan-
tage, many modular approaches provide means for deploy-
ing modules to machines. For instance, web applications
can be deployed through management interfaces of the ap-
plication server. The same techniques can be combined with
autonomic decision making to let the deployment and man-
agement of the cloud software in the hands of a runtime
platform that manages software modules as first class enti-
ties and the main units of deployment and distribution.

We propose to use these basic ideas as the core of a
model for cloud computing. The advantage of modularity

should be obvious. What remains to be shown is that mod-
ules can really be used to build distributed applications on
the cloud, to define the functionality of the underlying run-
time platform, and to show with an example how the idea
may work in practice. With the proper software fabric un-
derneath, our model allows programmers to focus solely on
developing the functional aspects of an application in the
form of software modules and treat the distribution in the
cloud as an orthogonal concern. While the modules are ag-
nostic to any distribution-specific requirements, it is the task
of the fabric to support the deployment of the modules and
handle the calls between distributed modules. Among the
many and different module approaches, OSGi [7] for the
Java language is one of the most popular and widely used
systems. Hence, in the following section we discuss how to
borrow the ideas of OSGi and extend them to create such a
software fabric.

3. Universal OSGi: The Fabric for the Cloud

OSGi is an open standard for dynamic software modules
in Java. Additionally, it specifies a runtime infrastructure,
the so-called FRAMEWORK, to load new modules and man-
age the life cycle of modules at runtime. In order to do so,
OSGi loads each module through a separate class loader. By
making the dependencies between modules explicit, OSGi
can dynamically compose the modules at runtime while at
the same time preserving the type consistency within the
VM. Imports from another module lead to a delegation to
the class loader of the dependency. Besides these tightly
coupled dependencies, OSGi facilitates the loose coupling
of modules through services. Every plain Java object can
be a service when it is published under a set of service in-
terfaces. Clients can retrieve services from a central service
registry by the name of the interface and, optionally, filtered
by predicates over service attributes.

The OSGi model is a very advanced way of dealing with
modules. However, two intrinsic features of the design pro-
hibit the use of OSGi in the cloud. Firstly, OSGi only deals
with services running on the same Java virtual machine. In
this regard, OSGi is able to loosely couple a centralized ap-
plication running on a single address space but has no sup-
port so far for dealing with remote services. Secondly, an
implicit assumption of OSGi is that applications are writ-
ten in Java and that a Java VM is available on each node.
Clearly, this is not applicable in the cloud. However, a dis-
tinct advantage of loose coupling through services is that
service clients have no dependencies to the implementation
of a service but only on the service interface (Figure 1).

As a result, it is possible to bridge between different
OSGi frameworks by providing service proxies for remote
services. In order to preserve the expected behavior of a
centralized application, the service proxies have to be pro-
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Figure 1. Service clients are resolved against
the interface and have no dependency to the
service implementation.

vided by proxy modules which exhibit the same properties
as the remote module has. Furthermore, OSGi-based clients
can transparently talk to services written in any language as
long as the host running the service is able to understand
the protocol. For a consistent behavior with regard to a lo-
cal OSGi service, this involves that the service provider is
able to

a) share life cycle state information and other meta data
with the client

b) provide a Java interface for the service upon request

c¢) invoke the service upon request and send the result
back to the client.

a) is not particularly challenging to implement and trivial
for static language runtimes that do not allow dynamic code
loading and unloading. b) only requires the service provider
to provide a chunk of binary data that makes a Java in-
terface but not to understand the interface. c¢) potentially
involves Java serialization since service invocations could
ship complex Java types as arguments. However, the verbs
and objects used in the communication between the client
and the service are solely defined by the service through
the service interface. As a consequence, services can re-
strict themselves to simple types and a small set of derived
complex types. This approach is taken by most web service
protocols like SOAP [6]. If, however, it is a requirement
to support the entire expressiveness of the Java type sys-
tem, this does not prevent services from being written in
other languages. As we have shown in [11], it is sufficient
to statically generate the fragments of the Java serialization
protocol required for serializing and deserializing the types
involved. As a proof of concept, we implemented remotely
accessible OSGi services, for instance, for embedded sys-
tems written in C or for the TINYOS [4] sensor network
platform.

Summarized, the concept of modularization is language-
independent and the OSGi model allows non-Java services
to participate in cloud applications. With the UNIVERSAL
OSGi approach, we mean that the modularity of the OSGi

standard is pervasively used for managing modules and in-
teroperate through services, regardless of the implementa-
tion of the service and the communication protocol. For the
cloud, the availability of a universal modularity framework
means that it will soon be possible to construct modules in
different languages, deploy them to computers, instruct the
fabric to bind clients to remote services, and design cloud
applications that do not explicitly have to deal with distri-
bution. Another intrinsic feature of the cloud that perfectly
matches the modular design paradigm is the elasticity. On-
demand acquisition of computation resources together with
pay-as-you-go business models enable service providers to
scale their resources seamlessly with the number of users of
the service. Modules are already a viable deployment unit
and support on-demand relocation and replication for state-
less services. The software fabric can bind service proxies
to multiple redundant service implementations in the cloud
and seamlessly switch from one to another service. For ser-
vices containing state, replication among a varying number
of replicas can as well be added as an orthogonal concern.

4. R-OSGi: A First Step for Modules into the
Cloud

R-OSGi [10] is the conceptual extension of the OSGi
model for distributed systems. The R-OSGi software fabric
facilitates transparent distribution along the boundaries of
modules by turning service calls into remote service calls.
OSGi services from remote peers can be accessed through
proxy modules, dynamically generated by the client on de-
mand. These proxies do not only register a service stub but
also show the same behavior and are synchronized with the
state of the original service module. This is important for
a consistent behavior between a local setting for rapid pro-
totyping and the productive distributed environment in the
cloud.

Since OSGi does not impose any restrictions on services
and in fact accepts potentially every Java object to become
a service, R-OSGi has to deal with the same miscellaneous-
ness that is expressible in Java. In particular, the service
interfaces of remote services can have (tightly coupled) de-
pendencies to either classes from inside the original module
or other modules. R-OSGi provisions dependencies through
two different mechanisms. Intra-module dependencies are
injected into the proxy module (a process which we coined
TYPE INJECTION). The result of the injection of depen-
dency classes is that the content of the proxy module is
equivalent to that fraction of content of the original mod-
ule that is exposed through the transitive closure of the ser-
vice interface and all its intra-module dependencies. Inter-
module dependencies are provisioned to the runtime be-
fore installing the proxy by creating copies of the respective
modules on the client.



As discussed in the previous section, the OSGi model
is generally capable of dealing with non-Java services. In
particular, the service-oriented approach can be easily used
to interoperate with existing web service standards as they
are often found in the cloud. One limitation, however, is
that the application itself (the service client) still has to be
written in Java. This is arguably against the openness of
the cloud. The reason for the dependency to Java is that the
client of a remote service has to support the generation and
loading of a dynamic proxy module.

In R-OSGi, this is implemented with dynamic byte-code
engineering and wrapping the resulting proxy class into a
module so that the ordinary OSGi facilities for loading and
unloading modules can be used. In other language runtimes,
such facilities do not exist because OSGi is not defined for
those platforms. We are currently in the process of imple-
menting an OSGi-like platform for C as part of the BAR-
RELFISH [12] multi kernel operating system. As a prelimi-
nary result, it can be reported that implementing an OSGi-
like system for a runtime which usually runs modules in
different address spaces leads to a system design which is
between the two extremes defined by standard OSGi and
R-OSGi. Direct references to services like in OSGi are not
possible since they cross address spaces. Instead, service
calls have to resort to IPC, which make them similar to R-
OSGi remote service calls. Besides implementing OSGi-
like runtimes for other languages, it is a goal to develop a
mechanism for interoperability between platforms. This is
particularly challenging when different kinds of languages
like imperative and functional languages are involved.

With the R-OSGi fabric, a large class of OSGi applica-
tions can be developed as modules and distribution can be
added as an orthogonal concern. This POJO-like applica-
tion model is particularly attractive for building applications
in the cloud. In [9], we have presented a tool which enables
the composition of distributed deployments by dragging and
dropping modules and then deploying the resulting setting
to running machines. This deployment tool even supports
advanced aspects of distributed systems like load balancing
and fail-over redundancy.

5. Use Case: XTream

5.1. Overview

We illustrate the suitability and potential of our approach
using the XTream prototype. XTream is a personal stream
management system, which targets applications that collect,
process, and disseminate personal information by treating
arbitrary source thereof as sources of data streams. The po-
tential, challenges, and an initial model for personal data
streams have been demonstrated in [3].
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Figure 2. Data processing model of XTream

The application scenario for personal information pro-
cessing using XTream includes a large number of people
around the world that use XTream to manage and process
their personal information and also exchange parts of it with
their friends and colleagues. They will access their pro-
cessed information from a variety of end devices like mo-
bile phones or desktop applications and are only interested
in this processed information, not how and where it has been
precisely processed. Hence, XTream service providers can
offer processing services to people and realize the actual
processing in the cloud, making this application scenario a
perfect match for a cloud application. We briefly recapitu-
late the XTream model, present its service-oriented design,
deliver brief insight into the implementation of the proto-
type, and conclude how XTream can be run in the cloud
easily due to its modular, service-oriented design.

Figure 2 illustrates the XTream model. In this model,
applications are represented in a mesh of adapters and pro-
cessing elements, called SLETS (for stream-lets), which are
connected by CHANNELS. On the left, arbitrary sources
like e-mail accounts, instant messaging chats, photo blogs,
smart appliances in the home, or mobile phones are adapted
by a-slets, which bring data into the system. On the right,
sinks like graphical user interfaces (both on desktops and
mobile devices), digital photo frames, or actuators in the
home are adapted by w-slets. In between, a mesh of 7-slets
and channels processes (7-slets) and buffers and forwards
(channels) data.

The key challenge of personal data stream applications
that XTream tackles is the dynamic nature that is inherent
to these applications. The system must provide continu-
ous operation of the applications while changes happen at
runtime. On the one hand, the application mesh of a user
changes over time to follow the user’s personal needs and
preferences. These changes include adding and removing
new kinds of operators—and thus loading and unloading
code—as well as the ability to move or replicate parts of the
mesh to another device of the user. On the other hand, the
meshes of individual users exchange data with each other
and thus federate to a global mesh. Since a user only has
control over his own mesh, XTream must also be able to
gracefully deal with unpredicted changes from outside its
own mesh like, e.g., abrupt disconnection.



5.2. Modular, Service-Oriented Design

To deal with these challenges, XTream is designed in
a modular way and using services to provide a managed
and loose coupling of components through well defined in-
terfaces. A specific kind of slet, e.g., an a-slet for IMAP
mail servers, represents one module that can be loaded by
XTream. From this slet class, multiple instances of this
specific kind of slet can be created. Every instance reg-
isters a number of services. One of these services is an
Slet service representing the slet itself and providing man-
agement methods. The other services are any number of
InputPort and OutputPort services, which provide
for data exchange between slets and channels.

Likewise, channel modules provide different kinds
of channels (e.g., buffering/non-buffering, persistent/non-
persistent) that create channel instances, which register a
Channel service for management and ChannelInput
and ChannelOutput services for data exchange.

The extensive and uncompromising SOA design of
XTream facilitated its development significantly because
some cumbersome issues like bookkeeping tasks are ac-
complished by the SOA runtime—we will illustrate this
with an example in the subsequent section. Service types
(service interfaces), unique service identifiers, and arbitrary
service properties are sufficient to keep management infor-
mation about individual system elements (slets and chan-
nels) and their wiring.

In addition to running a mesh of channels and slets,
XTream also makes heavy use of modularization and
service-based interaction for administrative tasks like mon-
itoring a processing mesh and modifying it. The module
boundaries of XTream have been chosen to maximize co-
hesion and minimize coupling where possible. Features
of XTream that directly result from cohesion and coupling
properties are, for example, the ability to load and unload
management and monitoring modules at runtime and to ex-
tend the system with different variants of slets and channels.

5.3. Prototype Implementation

The design outlined above has been implemented in a
prototype on top of R-OSGi and thus written in Java. Once
Universal OSGi is available, the programming model of
XTream will be significantly broadened as slets can then
be written in any language.

Modules like the channel module, monitoring and man-
agement modules, or different kinds of slets are imple-
mented as bundles (which is OSGi’s module implementa-
tion). These bundles register and consume a number of ser-
vices as outlined above. This service-based interaction be-
tween modules is realized as standard OSGi services, regis-
tered with the OSGi service registry and making heavy use

objectClass = OutputPort
service.id = 27

xt.cid = port.0

xt.conn = null_cid

objectClass = CICI
service.id = 18
xt.cid = conn.2

objectClass = CICO
service.id = 19
xt.cid = conn.2
xt.chan = chan.7

Tracker expression:
(&(objectClass=CICO)

Tracker expression:
(&(objectClass=CICI)
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Figure 3. Component interaction in XTream

objectClass = CICI
service.id = 31
xt.cid = conn.4

of service properties. Thus, a significant amount of system
state, e.g., which slets are connected to which channels, is
already kept directly in the SOA runtime, which facilitates
not only the implementation of the prototype in terms of
keeping state but also in terms of accessing this state for
routine system operation. Figure 3 illustrates how state is
kept and directly accessed for routine system operation with
the example of the binding between slets to channels.

Figure 3 shows a small extract of an XTream mesh with
half of an slet depicted on the very left and half of a channel
on the very right of the figure. In the middle, two CONNEC-
TORS are shown. These are not present in the processing
model shown in Figure 2 and are only part of the implemen-
tation model, on which we do not elaborate in detail in this
paper. For the sake of understanding how component in-
teraction has been implemented, it is enough to understand
that connectors are simply another level of indirection be-
tween slets and channels and provided by a corresponding
connector bundle.

The bars in the figure represent services registered by
the respective components. On the left, the slet reg-
istered two OutputPort services, the connectors reg-
istered one CICI and one CICO (Channel Input Con-
nector Input/Output) service each, and the channel a
ChannelInput service. Depicted in boxes next to the
services are their respective service properties. These con-
tain a unique ID for each service and, in the case of ports
and connectors, to which connector or channel they are con-
nected. For example, the binding of the lower port of the
slet to the lower connector is recorded in the port’s service
property xt . conn, which is set to the unique ID conn. 4
of the connector. When this port wants to call the connec-
tor it is connected to (e.g., to send data to it), the connector
service can be easily fetched using its unique ID recorded in
the port’s service properties. Instead of fetching the connec-
tor service every time it is called, we use the OSGi service
tracker that automatically tracks the connector service for
the port. The tracker expression used is depicted in the leg-
end box. Likewise, the channel can easily access all con-
nector services that are connected to it using a simple ex-
pression. Note that the tracker expressions are always of



constant length and can be constructed solely from the com-
ponent’s own, local service properties, which is indicated by
the dashed arrows.

The component interaction presented above is only one
example how service-oriented design can even facilitate the
implementation of a system. Besides its own services, the
XTream prototype also uses a number of predefined OSGi
services, e.g., for logging or keeping state persistent.

5.4. XTream and the Cloud Made Easy

XTream defines an application model for building appli-
cations on data streams. In terms of XTream’s application
domain of personal information processing, the ability to
run and be managed autonomously in the cloud is an im-
portant property of the system to enable everyday users to
define, run, and access their personal information process-
ing applications without bothering about the wheres, hows,
whens, and further challenges of deploying and running a
distributed application. The way how XTream achieves this
is by assimilating the modular paradigm into its application
model. Users of the system never have to deal with the im-
plementation of channels. Neither do they have to worry
about how to connect different slets. Instead, XTream pro-
vides a set of prefactored source connectors and operators
which can be reused in new applications. The entire sys-
tem is nevertheless fully configurable. Custom slets can be
added at any time and seamlessly integrated into applica-
tions because of common interfaces defined through the slet
model.

6. Conclusions

The example of XTream shows that a clean modular de-
sign supported by services can be sufficient for designing
cloud applications independent of the fact that the resulting
deployment will be a distributed system. For XTream, this
can be achieved by the R-OSGi software fabric, which ex-
tends ordinary Java OSGi applications to run in distributed
settings. Our vision is to generalize this approach and turn
it into a generic application model for building cloud appli-
cations.
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