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Abstract

This article presents a software genlocking approach for unmodified Microsoft Windows systems, requiring no special-
ized graphics boards but only a low-cost signal generator as additional hardware. Compared to existing solutions for other
operating systems, it does not rely on any real-time extensions or kernel modifications. Its novel design can be divided into
two parts: a dedicated driver reads an external synchronization signal via interrupt lines. A user-space application performs
the synchronization using EnTech PowerStrip [EnTech Taiwan, PowerStrip Version 3.61, http://www.entechtaiwan.net/
util/ps.shtm] by inserting or removing lines to the invisible part of the images output by the graphics board. Robustness
to potential frame losses is achieved through continuous consistent timestamping. Tests yield an accuracy of up to £1/2
line deviation from the external signal and a low CPU load of 2% on current PC systems. Our system has been designed to
be compatible with off-the-shelf graphics hardware and digital output devices based on LCD or DLP technology. Our solu-
tion can be employed to build cost-effective VR installations such as large tiled displays and spatially immersive environ-
ments using commodity PC clusters. Furthermore, displays synchronized to camera acquisitions allow for novel and
convenient systems in the area of 3D scanning and smart adaptive displays, two application areas we will present in
the second part of this article.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Many VR installations combine video signals from multiple graphics engines to build large tiled or spatially
immersive displays such as CAVE™ installations [1] or the Varrier™ display [2]. To achieve a high visual qual-
ity, all involved video output devices require exact frame synchronization, i.e. genlocking. Besides the afore-
mentioned areas which have output synchronization as their major requirement, other projects like structured
light scanning systems [3,4] require synchronization between video output devices and cameras.

* Corresponding author.
E-mail address: dcotting@inf.ethz.ch (D. Cotting).

0167-8191/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.parco.2007.02.014


http://www.entechtaiwan.net/util/ps.shtm
http://www.entechtaiwan.net/util/ps.shtm
mailto:dcotting@inf.ethz.ch

D. Cotting et al. | Parallel Computing 33 (2007) 420-437 421

Recently, commodity PC clusters were introduced as an alternative to specialized graphics mainframes, like
SGI Onyx systems. Genlocking in those systems is usually achieved with specialized graphics boards, avail-
able, e.g. from NVIDIA or 3Dlabs, which are unfortunately rather expensive. Software genlocking relying
on very little, inexpensive hardware can provide a cost-effective alternative. Since timing is critical, to date reli-
able solutions are only available for real-time Linux.

This article explores the possibilities of using software genlocking on unmodified Microsoft Windows oper-
ating systems having no support for real-time applications. We provide a robust implementation for synchro-
nizing the video timings of all PCs in a cluster with a reference clock signal. Our software is intended to be
used in combination with existing high-level VR middlewares like Net Juggler [5] which already provide an
application-level frame synchronization. By additionally synchronizing the video signals, genlocking improves
the resulting display quality.

The software architecture, which comprises a system driver and a synchronization process, permits trans-
parent extension of any application with genlocking capabilities at run time. A hardware abstraction layer
based on PowerStrip [14] makes our system suited for any standard graphics board. The only special hardware
requirement is a low-cost TTL signal generator distributing the reference clock to the cluster nodes. The
employed synchronization strategy has been carefully developed to work smoothly with state-of-the-art digital
output devices like LCDs or DLP projectors which are quite sensitive to timing adjustments.

This article is an extended version of a previous publication [6]. It provides additional technical details on
our implementation and a more elaborate presentation of potential applications. It is organized as follows:
after surveying related work, we provide a short overview of the basics of video timing and present the chal-
lenges of synchronizing multiple video cards without direct hardware support. Based on those insights, we
develop a set of design decisions by evaluating alternatives to synchronize video cards in software and by con-
sidering problems specific to digital output devices. Those decisions build the basis for our implementation,
including both software and hardware design. Implementation issues are described in detail, as we have made
our software publicly available as open source (see http://graphics.ethz.ch/winsgl). We evaluate our approach
on a variety of hardware platforms and provide comparisons with existing solutions. Potential applications of
our novel approach illustrate the flexibility and versatility of software genlocking. Finally, we summarize our
achievements and give an outlook on possible future extensions.

2. Related work

Genlocking has been used in video studios for a long time. There, synchronization of different video sources
like cameras, title generators and computers is required in order to allow for clean cutting, blending and other
editing operations. Apart from costly specialized hardware, inexpensive multimedia computers like the Amiga
supported an external video clock signal, which provided genlocking capabilities. Even though some of these
vintage computers are still in use today, their development and support has been discontinued.

Traditionally, VR installations have been built using high-end graphics mainframes such as those produced
by SGI. Besides high graphics performance they usually offer a custom hardware genlocking option enabling
for tiled or active stereo display technologies. However, they are targeted at a specialized high-end market and
come at a high price.

As the graphics performance of conventional PCs is rapidly increasing, expensive graphics mainframes are
successively being replaced by powerful low-cost PC clusters. Software systems like Net Juggler [5], Syzygy [7]
or Chromium [8] provide platforms for distributed execution of virtual reality applications. See Streit et al. [9]
for an extensive overview. Designed as high-level middleware platforms, they do not include sophisticated dis-
play synchronization methods. Net Juggler [5] at least provides software swaplocking to synchronize frame-
buffer swaps between the cluster nodes, using synchronization barriers over Ethernet connections. The
other systems can be complemented by methods such as those by Bues et al. [10] or Scheffer et al. [11] which
also implement software swaplocking.

If higher synchronization accuracy is desired, the cluster nodes can be equipped with high-end graphics
cards, e.g. from NVIDIA or 3Dlabs, which are available with genlocking options. However, the prices of such
specialized boards still cannot compete with commodity PC hardware. Furthermore, some applications do not
need the rendering performance of the high-end graphics boards at all.
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A cheap alternative is provided by software genlocking, which tries to synchronize the video timing as close
as possible to a reference clock signal by only using a minimum amount of additional hardware. The reference
signal is usually fed through the parallel port, and synchronization is carried out by modifying one or more
parameters of the video timing in software. SoftGenLock [12] is an open source implementation for Linux
designed as an extension for the Net Juggler platform. An improved implementation is available from Woss-
ner et al. [13], also for Linux only. Besides their restriction to a specific operating system, both solutions only
support a limited set of graphics hardware because they directly modify the registers of the graphics chips:
either NVIDIA cards only [13], or boards compatible to the VGA standard on the register level [12], both
excluding for example modern ATI boards. Moreover, their synchronization strategies are incompatible with
most LCD and DLP display devices, yielding distorted images.

3. Video timing

This section provides a short introduction to video timing and presents the challenges of synchronizing
multiple video cards without direct hardware support. The information provided in this section serves as a
basis for the conclusions taken in the next section.

3.1. Image generation

Throughout this article, the term synchronization will mainly be used to refer to the synchronization of
multiple video cards, respectively their output signals. The most basic nature of synchronization in terms
of video signals, however, is the synchronization between the video source, e.g. a graphics card, and the dis-
play device, e.g. a monitor or a projector. Hence, we go into the details of this synchronization by examining
how video frames are encoded and transmitted from the video source to the display device.

A frame consists not only of visible but also of invisible pixels. The latter are a legacy from the times of
cathode ray tube (CRT) monitors. Fig. 1 shows how a frame is composed of various video timing areas in
a single frame and indicates the path the cathode ray follows when drawing an image. The visible area, where
the ray is effectively drawing the image onto the screen is referred to as the active period. It is surrounded by an
invisible area which is made up by the front porch, the back porch and the retrace. While passing this area the
ray is disabled.

Those four timing components appear horizontally as well as vertically and always in the same sequence, as
illustrated in Fig. 2. The gray area marks one full sequence comprising a full line (horizontally) or a full frame
(vertically). Furthermore, the state of the synchronization signal is indicated. It is active during the retrace and
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Fig. 2. Sequence of timing components.

thus effectively causes the ray to return. The purpose of those timing components for CRT monitors are as
follows.

e During the active period, the actual image is drawn.

e The front porch follows the active period. It gives the ray time to go to black before retracing across the
screen.

e During the retrace period, the sync signal is active and the ray moves to the other side of the screen. The
duration of the retrace is referred to as the sync width.

e After the ray has retraced to the other side of the screen, the back porch allows the ray to stabilize again
before drawing the next active period.

Since nothing is displayed during the front porch, the retrace and the back porch, these timing components
are often used to transmit non-image information. For example, during the vertical retrace teletext is trans-
mitted in PAL, or closed caption in NTSC.

Horizontally, the duration of these periods is measured in pixels. Each pixel has a duration (the reciprocal
of the pixel clock) and, thus, the duration of a horizontal period is the number of pixels multiplied with the
duration of one pixel. One full line consists of one horizontal active period, one horizontal front porch, one
horizontal retrace and one horizontal back porch. The duration #;,. of one full line can be computed as

1

line = 7 (paclive + Prront T Pretrace T pback)? ( 1 )
f pixelclock

Where pingex) 1s the number of pixels of the corresponding horizontal timing component. Note that in data
sheets, one usually specifies the scan rate, which is the number of lines transmitted per second. Therefore,
the scan rate is the reciprocal of the duration of one line.

Vertically, the duration is measured in lines. The duration of a vertical period is the number of lines it con-
sists of multiplied with the duration of one full line. One full frame consists of one vertical active period, one
vertical front porch, one vertical retrace and one vertical back porch. The duration #g ., of one frame, thus,
can be computed as

tframe - tline : (lactive + lfront + lretrace + lback)a (2)

where /(ingexy 1S the number of lines of the corresponding vertical timing component. Note that in data sheets,
one usually specifies the refresh rate, which is the number of frames transmitted per second. Therefore, the
refresh rate is the reciprocal of the duration of one frame.

The combination of Egs. (1) and (2) shows that the duration of a frame solely depends on the number of all
pixels and the duration of one pixel.

3.2. Synchronizing multiple video cards

From the properties of the video timing it is obvious that synchronizing two or more video cards is primar-
ily a question of either continuously synchronizing their pixel clock or at least synchronizing the point in time
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when they start drawing their lines. Hardware genlocking solutions have the ability to use an external clock as
their pixel clock or at least as a trigger for the vertical retrace.

Without this support in hardware, the most obvious approach is to set the video cards to exactly the same
timing (pixel clock, size of the front porch, back porch, et cetera). Then, in theory, once the shift between the
cards has been eliminated, the signals should be in sync. However, this approach fails due to slight disparities
of the pixel clocks of the cards. The pixel clock is derived from the video card clock generator whose core com-
ponent is a quartz crystal. Though quartz crystals are very precise and have a very low tolerance limit, it is still
not possible to keep two or more cards synchronized. Tests at a refresh rate of 60 Hz with two identical graph-
ics cards (NVIDIA GeForce 4 MX) in two identical computers set to identical timings yielded a discrepancy of
0.000086 Hz between both clocks. This resulted in one card being one full frame ahead of the other after
approximately 194 s.

Hence, synchronizing multiple video cards is not as easy as bringing the cards in sync once since it requires
continuous control and intervention to keep them synchronized. Information about the reference signal and
about their own timing therefore has to be known and a method must be available to change the local video
timing. The following section presents several solutions that fulfill these requirements.

4. Design decisions

Synchronizing video cards in software requires first of all information about the reference and local timing.
Second, one needs to modify the local timing in order to catch up or slow down and thus stay as close as pos-
sible to the reference signal. This section presents and discusses different solutions fulfilling these requirements.
Furthermore, problems that might arise with software genlocking and digital output devices are discussed.
Since we impose proper operation with LCD and DLP devices, these problems are of particular importance
and have to be solved.

4.1. Exchanging the reference clock signal

The reference signal used by a software genlocking solution generally equals the refresh rate, which means it
is usually within the range of 50-100 Hz. In practice, it has to be exchanged over an I/O port of the computer.
Since timing precision is crucial for genlocking and the costs of additional hardware should be kept minimal,
the parallel port is an optimal choice. It can still be found in many current computers or it can be added with
inexpensive expansion cards. The pins of the parallel port can be accessed directly at a certain memory-
mapped address thus making it fast and easy to use from the software side as well as from the hardware side.
Other ports would either require more sophisticated hardware or an overhead in processing, thus increasing
costs and decreasing precision. In the following sections, we investigate different signal acquisition and signal
propagation variants.

4.1.1. Interrupt vs. polling

SoftGenLock for Linux [12] uses polling to read the reference signal from the parallel port. To avoid a con-
tinuous loop of busy waiting, the software releases the CPU for most of the time and only wakes up shortly
before the next clock signal is expected. However, as a consequence, the software is exposed to the good will of
the scheduler of the operating system and thus only works reliably under a real-time kernel. A far better
approach is the use of hardware interrupts which have a very high priority also in non-real-time operating
systems. Feeding the external clock through an interrupt, e.g. the ACK-line of the parallel port, allows for
very low response times. When an interrupt occurs, the kernel will immediately preempt all other processes
running at a lower priority and call the interrupt service routing (ISR) associated with the interrupt of the par-
allel port. Only other hardware interrupts that happen at the same time or that are in their ISR already can
delay the call of the ISR associated with the parallel port. However, even if this happens, the delay will be
minimal, as ISRs have to be very short. They only do the work that is absolutely necessary in the moment
the interrupt occurs and then schedule a so-called deferred procedure call that does the main work later. Using
the interrupt of the parallel port thus is a very efficient and simple way to read the external clock signal with a
very high precision in a non-real-time operating system.
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4.1.2. Signal propagation topology

The existing SoftGenLock for Linux solution uses a setup with one master sending its internal sync signal
to multiple slaves. Sending the signal itself is easy and reliable, since it is basically a write access to a memory
address. However, detecting the own local timing, and thus knowing when to send, is not very reliable. If the
master misses its own retrace from time to time, it will send out an inaccurate clock signal to the slaves. There-
fore, the decision was made to use a dedicated clock generator as a reference and run all computers as slaves.

4.1.3. External synchronization via FireWire

Task scheduling on the local CPUs is the biggest timing critical issue, especially when the genlocking soft-
ware is running concurrently to computationally expensive display applications. An alternative to the afore-
mentioned approaches would be the offloading of the complete synchronization task from the rendering nodes
to a dedicated PC. This could be achieved using FireWire links. FireWire controllers have the ability to
directly access the computer memory with no interaction of the main CPU. This ability is commonly used
for debugging, but could also provide direct memory access to the address spaces of the display nodes from
an external computer. If an approach like SoftGenLock for Linux is chosen, where the actual genlocking is
carried out by raw memory accesses, i.e. by modifying memory-mapped graphics cards registers, a synchro-
nization PC could spend its full CPU time with polling and writing to registers of multiple graphics cards
in multiple display nodes connected over the FireWire bus. As a drawback, such an approach would again
be constrained to a very specific set of graphics hardware which is why we did no further investigation.
Our implementation yields an easier but nevertheless reliable solution which runs autonomously on each dis-
play node.

4.2. Measuring the local timing

When measuring the local timing, one basically has to detect the point in time when the vertical retrace
occurs on the local video card. The Microsoft DirectDraw API provides a function WaitForVerticalBlank
that will block until the vertical retrace has occurred. However, in most drivers, this function is implemented
as busy waiting. Having the CPU blocked the whole time renders the computer useless and thus is not an
option. Hence, the process has to release the CPU for a certain amount of time using a wait call. The time
to wait will be chosen as the period length of the sync signal minus some safety margin. On a non-real-time
operating system, however, it is not guaranteed that the scheduler will reactivate the process in time and thus it
is possible that one or more local retraces are missed. Those cases have do be detected using appropriate time-
stamping algorithms.

4.3. Modifying the local timing

To synchronize the local video card, it is necessary to modify its timing, so it can slow down or catch up
compared to the reference signal. This can be done by changing the invisible area of the image. By removing or
inserting some pixels (horizontal) or lines (vertical) into one of the timing components that comprise the invis-
ible area (front porch, back porch and retrace) it is possible to change the duration of a frame without chang-
ing the visible area. Another way to achieve this is to modify the pixel clock. These methods were evaluated
with the targeted output device, an NEC LT 240K DLP projector. Additionally, two DELL LCD flat panel
displays (models FP1700 and FP1701) were tested as well. All devices have been connected to the analog VGA
output of the graphics boards.

According to our experience, digital display devices do not tolerate even small changes in most of the timing
components, because they have to resample the video signal into an internal framebuffer. Changes to the dif-
ferent components show different distortions in the displayed image. When increasing or decreasing each of
the six invisible components in a full frame, we observed horizontal or vertical shifts of the picture generated
by the DLP projector. Table 1 lists the observed reactions, where the arrows indicate the direction of the shift.
The granularities for these changes were eight pixels horizontally and one line vertically. The reactions could
already be noticed after increasing or decreasing one step of these granularities. Similar effects could be
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Table 1
Reaction of an NEC LT 240K DLP projector to different changes in the invisible timing components

Horizontal Vertical

Increase Decrease Increase Decrease
Front porch — — Stable Stable
Back porch — — 1 T
Sync width — — ! T

The direction of the arrow indicates the observed shift of the picture.

observed on the other digital displays. Depending on the device, changes to the vertical front porch of up to
ten lines did not show any reaction.

These reactions make sense when considering how these display devices work. Looking at the vertical front
porch for example, which occurs below the visible area, between the active period and the retrace (see Fig. 1),
one can expect that changes to this timing component can be ignored. The visible area of the image is already
drawn and sampled to the frame buffer of the device, and the sampling circuit is waiting for the vertical
retrace, which indicates the upcoming start of a new frame and is transmitted through a dedicated sync line.
Hence the vertical front porch can safely be ignored, as long as the overall timing does not vary too much from
the timing onto which the sampling circuit has been calibrated. As an example where the image changes, the
reaction of the device to an increase of the horizontal back porch also makes sense. The back porch appears
before the visible area of that line and when it is increased, the sampling circuit already samples pixels because
it thinks the video signal is already in the active period. These pixels are all black during the back porch and,
hence, the image appears to be shifted to the right.

Another method to change the video timing is to change the pixel clock. Digital display devices however do
not appreciate these changes at all, reacting with jitter and distortion of the whole image. Thus, it is obvious
that the only suitable method for changing the local video timing is the modification of the vertical front
porch. It is a very clean way, since the change occurs after the visible area has been sampled, making it possible
to operate the device with a timing it has not been fully calibrated to, but to still have a properly sampled
image. Using this method, we also could observe a similar robust behavior for displays connected to the
DVI output of the graphics board and with different resolutions.

5. Implementation

According to the previous considerations, we implemented a robust software genlocking solution running
on unmodified Windows 2000 or Windows XP systems. Fig. 3 shows the architecture of the solution and the
interaction between all components. The boxes on the left side are our custom-built software modules. The
kernel-mode sgl driver measures the external clock signal via an interrupt service routine and generates appro-
priate timestamps. Those are received by the user-mode sgl application which measures the local timing from

get and set
Sgl videotiming EnTech
S e/ : :
application PowerStrip
'\
read external wait for get and set
user - mode syncsignal vertical retrace videotiming
kernel - mode
external v id
sync - video
. Videocard | output
—| sgldriver : —
parallel port driver

IRQ line

Fig. 3. WinSGL architecture.
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the video card driver and performs the necessary adjustments by programming the graphics board. The graph-
ics hardware is accessed through the third party utility EnTech PowerStrip [14] and the DirectDraw API of the
video driver, both providing a hardware abstraction layer, making our system applicable for a variety of
graphics boards. A detailed description of all system components is presented in the following sections.

5.1. Hardware

The system requires a reference signal to synchronize with. A square-shaped TTL signal with the frequency
according to the targeted refresh rate is fed into every PC through the parallel port interrupt line at pin 10 on
the commonly used 25 pin D-SUB connector. An appropriate signal can be generated by an inexpensive off-
the-shelf signal generator or a programmable microcontroller-based solution, the approach we have chosen
for our implementation.

5.1.1. Clock generator

The WinSGL software requires an external signal to synchronize with. The frequency of this signal has to
be equal to the targeted refresh rate, and its shape ideally is a square wave. Other shapes might also work as
long as they have a clear high-low and low-high transition, and both the low and the high parts have reason-
able durations. Low and high signals should comply with the signal levels for IEEE 1248 compliant standard
parallel ports which are 0 V and 5V (TTL).

We used a Toshiba TMP92FD54 microcontroller on a developer board (approx $50, see Fig. 4), running a
program that generates a clock signal by looping a certain number of iterations and thus executing a certain
number of processor cycles of known duration. Such a generator provides a stable clock signal that is appro-
priate for software genlocking.

During implementation, we also evaluated an inexpensive off-the-shelf signal generator. The quality of this
device, however, was so poor that the frequency changed significantly over time, probably due to thermal
effects. Though these changes did not disturb the operation of the software genlocking, which adapted
smoothly to the changes, a stable reference signal was desired, and thus the microcontroller was used as a
clock generator for the project.

5.1.2. Parallel port cable

The reference signal provided by the clock generator is fed to the computers through a custom cable that
provides a BNC connector for the clock generator and several male 25 pin D-SUB connectors for the parallel
ports. On a D-SUB connector, the clock signal is connected to pin 10 (ACK-line), which can be used to trigger
the interrupt line of the parallel port, and ground is connected to one of the many ground pins (pins 18-25).
Since parallel ports are very sensitive and some clock generators can generate negative peaks when being pow-
ered off, a quenching diode is added to the cable as a protection.

5.2. Hardware abstraction layer

To support a variety of different graphics boards, we are using a hardware abstraction layer, which com-
prises the DirectDraw API included in Windows as well as the third party utility PowerStrip.

Fig. 4. Microcontroller for generating clock signal.
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5.2.1. DirectDraw

The hardware-independent DirectDraw function WaitForVerticalBlank is used by our solution to detect
vertical retraces. Virtually every video driver available for recent versions of Windows is DirectDraw compat-
ible and thus provides an appropriate implementation of this function.

5.2.2. PowerStrip

PowerStrip [14] from EnTech Taiwan is a shareware utility that allows to change every aspect of video tim-
ing. It supports all native display modes implemented in the graphics driver of the GPU manufacturer. Besides
the graphical user interface, PowerStrip features an API that can be used to access its functionality from other
programs. Since PowerStrip supports a variety of graphics boards, we use it as a hardware-independent way to
read and modify the timing of the video card.

5.3. SGL driver

Like most modern operating systems, Windows 2000/XP does not allow user-space applications to directly
access hardware. Therefore, we developed a kernel-mode driver to measure the reference clock signal at the
parallel port.

The driver installs its own interrupt service routine to keep track of the reference signal via parallel port
interrupts. It maintains a ring buffer of the last eight timestamps when the interrupt occurred and a ring buffer
of the last 256 interval lengths between two interrupts. The former is required by the application to measure
the deviation between the local video timing and the reference signal. The latter is used to get a smooth aver-
age measurement of the period length of the external clock which is represented by the sum of all 256 values.
At each call to the interrupt service routine, the sum is updated by adding the current interval length and sub-
tracting the oldest one, yielding a time complexity of O(1). Time is measured in ticks of the computer timer.
Under Windows, this time is referred to as the performance counter. In recent systems, the resolution of the
timer equals the clock of the CPU. On older systems, this is not the case and the timer can have a different
(usually lower) resolution. Many early Pentium 4 computers for example have a timer with a resolution of
3.579545 MHz.

The following sections describe the driver in more detail providing insight into its implementation and
operation.

5.3.1. Initialization

When being loaded, the driver creates a device object \\Device\sglreadsO, attaches it to the driver
stack and creates a symbolic link \\DosDevices\sglreads0, which makes it easier to access the driver from
the application. The driver will only take further initialization steps when it is actually used. With the
first access to the driver, which must be an I/O control operation with the control code IOCTI_INI-
TIALIZE, the driver initializes and prepares for operation. In the registry, it looks up the parallel port
device to attach to, opens it and connects the interrupt service routine to the interrupt of the parallel
port. Finally, it waits for the ring buffers to fill, before the I/O control operation returns. If not enough
samples arrive through the interrupt line in reasonable time, the I/O control operation returns with an
error.

5.3.2. Interrupt service routine

On every interrupt of the parallel port, the interrupt service routine is called. The sole purpose of this rou-
tine is to update the two ring buffers and to compute the average period length. When called, the interrupt
service routine first stores the current timestamp. Afterwards, it computes the interval length between this
measurement and the one from the last call to the routine (stored in the ring buffer containing the last eight
timestamps). The next step is to subtract the oldest interval in the time interval ring buffer from the variable
containing the average period length times 256. Then, the new interval is added to this variable and stored in
the ring buffer. Finally, the current timestamp is stored in the timestamp ring buffer. This way, computing the
average period length of the external clock signal is always of complexity O(1), independent from the number
of measurements used.



D. Cotting et al. | Parallel Computing 33 (2007) 420-437 429

5.3.3. 110 control operations

The application can request information from the driver through various I/O control operations. Table 2
lists the operations supported by the driver. TOCTL GET INTERRUPT COUNTER and IOCTL_GET PAR-
PORT_STATE are for statistical purposes only and not strictly needed by the application during regular
operation.

5.3.4. Deployment

Besides the aforementioned functionality required by software genlocking, the driver has some additional,
technical properties. It is compliant with the Windows Driver Model (WDM) including plug-and-play and
power management support. These enable the driver to be installed, removed, loaded and unloaded during
runtime without rebooting.

5.4. SGL application

The main application contains the actual genlocking logic. It interacts with the driver, PowerStrip and the
DirectDraw API to achieve software genlocking. After initialization during startup, it performs three main
steps: Calibrate, BringlnSync and KeepInSync (see Fig. 5). During normal operation, KeepInSync will finally
loop forever. If, however, for any reason KeepInSync cannot proceed, it will return and the main loop will
start over again with Calibrate. The initialization as well as the three main steps are described in the following
sections.

5.4.1. Start
The initialization phase consists of several steps, which are executed sequentially in the following order:

. Query performance counter to retrieve its precision.

. Get handle to PowerStrip.

. Create an instance of DirectDraw.

. Get handle for sgl driver.

. Initialize the driver.

. Get average period length of external reference clock from driver.
. Fetch modeline that is currently active (using PowerStrip).

~N QN AW~

If the steps mentioned above were executed successfully, the application priority is increased to the maxi-
mum possible. Under Windows the priority of a program consists of a process priority class and the priority of
its threads. The highest process priority class is REALTIME _PRIORITY_CLASS, and the highest thread pri-
ority is THREAD_PRIORITY_TIME CRITICAL. After increasing the priority, the main loop is entered, exe-
cuting the three steps explained in the subsequent sections.

5.4.2. Calibrate
During calibration, two reference video timings are identified that are closest to the external reference sig-
nal, one slower and one faster than the signal period length. They are computed directly from the currently

Table 2

I/O control operations supported by the sgl driver

/O control request Purpose

IOCTL INITIALIZE Initializes operation of the driver, returns an error if initialization fails

IOCTL GET AVERAGE DIFF Returns the value containing the average period length of the external clock times 256 as long
long

TIOCTL GET LAST TIMESTAMPS Returns the last eight timestamps when the ISR was called in an array of long long

IOCTL _GET_INTERRUPT COUNTER Returns how often the ISR has been called since initialization as unsigned long
IOCTL _GET PARPORT STATE Returns the three eight-bit registers of the parallel port in one 32-bit unsigned long
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Fig. 5. SGL application control flow.

active timing/modeline by modifying its front porch. The number of lines /.o in the front porch of the faster
timing is computed as

lfront = \f dext . 1 - (lactive + lretrace + lback)J ) (3)
perfcount Lline
with #i,. from Eq. (1). dey is the period length of the external signal in clock ticks, and fperfcount the resolution
of the performance counter. The slow timing will have exactly one line more.
However, the measurements of the external signal as well as the timing values provided by the driver might
not be totally precise. Furthermore, the clock generator of the video card as well as the clock of the computer

may have a small tolerance. We cope with those inaccuracies in the next steps using appropriate timing
thresholds.

5.4.3. BringInSync

This function brings the video signal of the computer in sync with the external reference signal. To accom-
plish this, one of the two reference timings computed by Calibrate is activated using PowerStrip, and the devi-
ation between the video signal and the external clock is continuously measured. If the deviation drops below a
threshold, BringInSync exits and passes control to KeepInSync.

The deviation is the signed distance between the local video signal and the closest reference signal. The
application first waits for the vertical retrace using the DirectDraw function WaitForVerticalBlank. As soon
as it returns, the timestamp of the performance counter is stored. Second, the last eight reference timestamps
from the driver are fetched after an additional delay of half a period length. This delay is necessary because the
closest external clock tick might occur after the local retrace. Finally, the deviation is computed as the differ-
ence between the local timestamp and the reference timestamp that has the smallest absolute distance to the
local timestamp. The measurement process is illustrated on the right side of Fig. 6. Additionally, on the left
side, the figure shows a situation where a local retrace is missed (at timestamp 401) because the scheduler has
not reactivated the process in time. The algorithm still works correctly in that case, since it just waits for the
next retrace.

scheduled wake-up
missed retrace d=-10

actual wake-up i{-)‘

external | |

local

r r r r t
401 410 521 531 >

Fig. 6. Deviation (d) between the local video timing and the external reference signal.
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5.4.4. KeepInSync

After the local video signal has been synchronized once, the KeepInSync function loops forever to keep the
signal in sync as long as no error occurs. Like BringlnSync, it continuously measures the deviation between the
local and the external signal. As soon as the sign of the deviation changes, the reference timings are swapped
using PowerStrip, i.e. if the fast timing was active, the slow will become active and vice versa. In order to allow
for smoother operation, a threshold can be specified which implements a hysteresis. Fig. 7 shows the two tim-
ings measured on an oscilloscope and the threshold range around the reference signal (lower signal). As long
as the local video signal is within this range no actions will be taken by the algorithm. When the local signal
leaves the threshold range and thus the absolute value of the deviation exceeds the threshold, the timings are
swapped and the local signal will move towards the reference signal again.

The deviation is measured the same way as in BringInSync. However, here the algorithm does not wait half
a period length after WaitForVerticalBlank returned, but just as long as it is necessary for the next external
clock tick to arrive. Due to this optimization, reactions can be taken even faster.

6. Results

We evaluate our software genlocking approach using various graphics boards in different PC systems by
measuring the maximum amount of deviation between the reference clock signal and the synchronized vertical
retrace using an oscilloscope. In a common VGA connector, the vertical sync signal is directly accessible on a
dedicated pin (pin 14). We built a small box with both a female and a male VGA connector and two BNC
connectors, providing access to the vertical sync as well as the horizontal sync (pin 13).

Additionally, we also quantify the CPU load caused by our software. Where the resolution is not explicitly
stated, the tests are conducted at a resolution of 1024 x 768 pixels and a refresh rate of 60 Hz. To test the sta-
bility of our system, we perform the measurements on both an idle and a busy CPU. We simulate computa-
tionally expensive applications running on the same PC by running a process consuming all available CPU
time at default process priority.

Table 3 shows results using various graphics boards in a state-of-the-art PC running Windows XP SP2.
Except for an older NVIDIA GeForce4 MX 420 board, genlocking is stable in all cases with a precision of
430 ps which is approximately +1.5 line with regard to the used video timing. Given the low CPU load of
2-3%, our software has a very low impact on the performance of the system. Even more important is the fact
that genlocking precision does not decrease on a busy CPU, leaving the system available for running VR and
other parallel graphics applications.

Note, however, that the PowerStrip tool needs an additional CPU load of up to 11% on ATI cards. This
presumably results from the manner PowerStrip has to act when changing the video timing on these cards.
When running on other graphics cards, PowerStrip consumes virtually no CPU time.

With the GeForce4 board, the signal gets out of sync approximately every 5-120 s, abruptly cancelling the
currently drawn frame and starting a new one. This is presumably a problem of PowerStrip or the NVIDIA

T deviation

J\ /— threshold range

|[e——>le—]|

1440000000 00000

Fig. 7. Threshold for deviation.
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Table 3
Different video cards on a Pentium 4 with 1.8 GHz and Windows XP SP2
Graphics card CPU idle CPU busy
Precision (ps) Load (%) Precision (ps) Load (%)
NVIDIA GeForce4 MX 420 +30° 2 +33¢% 2
NVIDIA GeForce FX 5200 +34 2 +32 2
ATI Radeon 8500° +27 2-3 +27 2-3
ATI Radeon X800° +27 2-3 +27 2-3

# Signal sporadically out of sync.
® Additional CPU load of 8-11% caused by PowerStrip, see text.

display driver, arising after too many changes of the video timings. However, the signal returns back into sync
showing that our algorithm effectively handles delayed wake-ups and missed timings.

To emphasize that our system really works with off-the-shelf hardware, we have done some further tests
with a legacy 800 MHz Pentium 3 PC running Windows 2000 SP4 and two different Windows XP notebooks.
Results are given in Tables 4 and 5. The CPU load increases due to the weaker processors, but the synchro-
nization precision stays as good as before. We are even able to reach an accuracy of 10 us on a Matrox
board.

We compare our solution with SoftGenLock for Linux version 2.0a3 which in spite of its alpha status
appeared to be more performant than the last stable version 1.0. The tests were conducted on a 1.8 GHz Pen-
tium 4 running Mandrake Linux 10.0 and an NVIDIA GeForce FX 5200 graphics board using the official
NVIDIA drivers for Linux. We used the Linux kernel version 2.4.25 with RTAI 3.0r4 real-time extensions
[15] as well as the vanilla kernels 2.4.25 and 2.6.3. Under the non-real-time kernels, best results have been
achieved by using FIFO scheduling, i.e. real-time priority, and the real-time clock of the computer with a rate
of 1024 ticks per second.

Using the pixel clock adjustment as a video timing adaptation strategy, SoftGenLock achieves a higher pre-
cision than our method, as can be seen in Table 6. As could be expected, the process is stable with barely no
CPU usage under the real-time kernel. Similar results could be achieved under the non-real-time kernel 2.6.3 at
the cost of a higher CPU load compared to our software. Kernel version 2.4.25, which contains less effective
scheduling algorithms, did not yield a stable synchronization. The more flexible, alternative strategy of insert-
ing invisible pixels has been less robust in our experiments. We could only achieve a precision of £70 ps under
the real-time kernel and just frame synchronization accuracy using the vanilla kernels.

SoftGenLock for Linux performs better than our solution when using pixel clock adjustment. However,
this adaptation strategy is limited to NVIDIA cards and is incompatible with digital output devices. Also
the less efficient adaptation strategy of inserting invisible pixels is incompatible with digital output devices.

Table 4
Different video cards on a Pentium 3 with 800 MHz and Windows 2000 SP4
Graphics card CPU idle CPU busy

Precision (ps) Load (%) Precision (ps) Load (%)
NVIDIA GeForce3 Ti 200 +30 10% +36 10%
Matrox MGA-G200 AGP +10 10% +10 10%
Table 5
Two notebooks with ATI and NVIDIA graphics chips
Notebook model CPU idle CPU busy

Precision (us) Load (%) Precision (us) Load (%)

IBM T42 Pentium M 1.7 GHz ATI Mobility Radeon 9600* +25 7 +25 7
DELL Precision M60 Pentium M 1.6 GHz NVIDIA Quadra FX Go700 +34 10 +31 10

# Additional CPU load of 7-11% caused by PowerStrip, see text.
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Table 6
Comparison of WinSGL (for Windows) and SoftGenLock (for Linux) on a 1.8 GHz Pentium 4 PC with an NVIDIA GeForce FX 5200
graphics board

Operating system CPU idle CPU busy
Precision (ps) Load (%) Precision (ps) Load (%)
Windows XP SP2 +34 2 +32 2
Linux 2.4.25 & RTAI 3.0r4 +7 2 +7 2
Linux 2.4.25 +8* 20 +8* 20
Linux 2.6.3 +7 10 +7 10

# Signal sporadically out of sync.

Furthermore, good performance with very low CPU load is only achieved on a real-time kernel. Therefore,
SoftGenLock for Linux does not provide the flexibility of our approach as it is only suited for a very limited
range of setups, consisting of a real-time enabled kernel, NVIDIA graphics cards and cathode ray tube mon-
itors or projectors.

The presented results show that our software solution is running reliably on unmodified Windows systems
with very low impact on the performance of the system and thus can be a feasible alternative to expensive
hardware if no hard synchronization is required. Due to the signal propagation topology and software archi-
tecture, our approach scales to virtually any number of nodes containing a heterogeneous setup of graphics
cards. It is compliant with digital output devices like DLP projectors or TFT panels and works with the
VGA interface as well as with the DVI interface. Additional tests with resolutions up to 2048 x 1536 pixels
showed that it supports higher resolutions without degradation in genlocking performance or increased
CPU load.

7. Applications

The precision achieved by our software-based genlocking approach is suitable for a wide range of display
applications. In combination with framelocking middleware like Net Juggler [5], it can be used to build VR
installations with active stereo displays in CAVE-like immersive environments or on large tiled displays
(see Fig. 8).

Recently, novel applications that require video synchronization have been developed. Waschbuesch et al.
[4] synchronize projectors and cameras to acquire three-dimensional geometry of dynamic scenes using struc-
tured light patterns. Even more accurate timing is required by Cotting et al. [3] who use imperceptible high-
speed structured light projections for realizing smart displays sensing the environment. WinSGL can be used
there as a cost-effective alternative to genlocking hardware. In the following sections, we present these two
research areas in more detail.

7.1. Structured light scanning with concurrent texture acquisition
We present the concept of our 3D video acquisition system for capturing textures and depth maps of a mov-

ing scene [4]. This data can be used to reconstruct a dynamic three-dimensional model of the scene which
allows for re-rendering the video from novel views of a virtual camera as depicted in Fig. 9.

Fig. 8. Active stereo projection in immersive environments.
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Fig. 9. Our 3D video system acquires color images of moving scenes (left) with corresponding depth maps (middle) which are used for re-
rendering the video from novel views (right).

The basic building blocks of the setup are movable 3D video acquisition bricks, each consisting of a stan-
dard PC, several calibrated cameras and a projector. In our current setup, we are using four bricks. A single
brick prototype is shown in Fig. 10. All hardware components of the system are synchronized to a common
clock signal: the cameras support hardware triggering at 12 frames per second via a proprietary signal connec-
tor, the projectors are genlocked at 60 Hz using WinSGL.

Each brick acquires texture information with a color camera and depth information using stereo vision on a
pair of greyscale cameras. To increase robustness and accuracy of the stereo matching, a projector is used to
illuminate the scene with structured light patterns, as originally proposed by Kang et al. [16]. To avoid untex-
turized shadows, the scene is illuminated by patterns from all bricks at the same time. In contrast to pure
structured light methods, our stereo vision approach has the advantage of being insensitive to interferences
between the different projections and does not need a projector calibration.

Color textures are captured concurrently to structured light illumination by alternating between projections
of a pattern and its corresponding inverse, and using an appropriately synchronized texture cameras, as illus-
trated in Fig. 11. The shutters of the color cameras are open during the projection phases of pairs of inverse
patterns. This way, those cameras do not see the patterns emanating from the projector but only a constant
white light which serves as a scene illumination preserving the original textures (see Fig. 10). Since the patterns
are changing at a limited rate of 60 Hz, flickering is slightly visible to the human eye. Alternative solutions
using imperceptible structured light [3] do not show any flickering, but require faster, more sensitive and there-
fore more expensive cameras for reliable stereo depth extraction.

In.r

Fig. 10. 3D video brick with cameras and projector (left), simultaneously acquiring textures (middle) and structured light patterns (right).

Sequentially
Projected Patterns
| P——]

Exposure of
Stereo Cameras

Exposure of
Texture Camera

Fig. 11. Camera exposure with inverse pattern projection.
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7.2. Smart displays using imperceptible embedding of patterns

As an enabling technology for smart displays, we use a method to invisibly embed arbitrary binary patterns
into ordinary color images displayed by unmodified, off-the-shelf Digital Light Processing™ (DLP™) projec-
tors (see Fig. 12). In DLP projectors, each displayed pixel is generated by a tiny micro-mirror, tilting towards
the screen to project light and orienting towards an absorber to keep the pixel dark. Gradations of intensity
values are created by flipping the mirror in a fast modulation sequence (see Fig. 13), while a synchronized filter
wheel rotates in the optical path to generate colors. By carefully selecting the projected intensities, one can
control whether the mirrors for the corresponding pixels project light onto the scene during a predefined expo-
sure time slot of a synchronized camera. The core idea of the imperceptible pattern embedding is a dithering of
the projected images using color sets appearing either bright or dark in the triggered camera, depending on the
chosen pattern. Such color sets can be obtained for conventional DLP projectors by analyzing their intensity
patterns using a synchronized camera. For more details refer to [3].

This imperceptible embedding technique [3] allows to control the appearance of the projection surface dur-
ing a camera exposure in a setting, where the projectors are genlocked and synchronized to the camera-based
acquisition using WinSGL. This control is done at the scale of individual projector pixels and in an impercep-
tible way, thus allowing structured light approaches not noticeable by the user. Therefore, during operation of
our smart displays, the environment can be imperceptibly scanned and novel environment-aware display func-
tionality can be achieved, enhancing existing display technology in the areas of user-friendliness, flexibility,
scalability and interaction.

By introducing vision-based structured light scanning imperceptibly into office environments and human-
inhabited mixed and augmented reality settings, we can explore various application scenarios and achieve
novel display opportunities like undistorted views on arbitrary geometries [3], self-calibrating displays dynam-
ically adapting to setup changes [17], encumbrance-free tracking techniques (see Fig. 14) and environment-
aware adaptivity, as shown in Figs. 15 and 16 [18].

Fig. 12. Projected display containing imperceptible pattern (see inset).

Exposure time slot

Color intensity

Light modulation overtime

Fig. 13. Light modulation of a DLP projector.
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Fig. 15. Analysis of the projection surface properties for the environment-aware display adaptivity: (a) Snapshot of the scene taken from a
camera (visible to human). (b) Captured pattern image (imperceptible to human). Note that in this setting the projector frusta do not cover
the entire table. (c) Magnitude of the filter response. (d) Parts of the environment suited for projection (shown in white).

Fig. 16. Environment-aware display adaptivity based on imperceptible structured light scanning enabled by synchronized projection and
capture. The display reacts to the colliding cell phone and subsequently avoids the shadow cast by the hand by dynamically relocating to
an adequate area determined by the scanning of the projection surface.

8. Conclusion and future work

We presented a novel software genlocking scheme for Microsoft Windows operating systems imposing no
additional requirements like real-time extensions. Our system is compatible with most graphics boards and
cooperates smoothly with digital output devices. The implemented software performs accurately and reliably
while only requiring a low CPU load. Thus, our solution can be used as an inexpensive alternative to hardware
genlocking when no pixel-accurate synchronization is needed. For the benefit of the parallel graphics commu-
nity, we have published our code as open source (see http://graphics.ethz.ch/winsgl).

Additional improvements could be accomplished in the following areas:

Frame- and swaplocking: instead of depending on third party software, we would like to natively provide
frame- and swaplocking mechanisms based on network barriers in our software.

Multi-head support: We would like to support multi-head systems which include multi-head graphics cards
as well as systems with more than one graphics card. PowerStrip has support for multi-head configurations
which leaves the detection of the vertical retrace as a last obstacle to implement multi-head support.
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Parallel port alternatives: the standard parallel port is becoming legacy and is already missing in some new
computers. Porting the driver to another interface, like the USB or FireWire port for example, would be desir-
able but imposes some difficult technical challenges to guarantee an accurate synchronization.
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