
XTream: Personal Data Streams∗

M. Duller, R. Tamosevicius, G. Alonso, D. Kossmann
Department of Computer Science

ETH Zurich
8092 Zurich, Switzerland

{michael.duller, rokas, alonso, kossmann}@inf.ethz.ch

ABSTRACT
The real usability of data stream systems depends on the
practical aspect of building applications on data streams.
In this demo we show two possible applications on data
streams implemented on our prototype platform XTream.
One application integrates VoIP and E-Mail, the other one
incorporates streams in a Smart Home setting. Using these
applications we try to identify and discuss the functional-
ity that data stream management systems should provide.
Those attending the demo will be able to compose their own
applications.

Categories and Subject Descriptors
H.1 [Models and Principles]: User/Machine Systems—
Human information processing ; H.2 [Database Manage-
ment]: Systems—Distributed Databases; H.5 [Information
Interfaces and Presentation]: User Interfaces

General Terms
Design, Management

Keywords
XTream, Data Streams, Distribution, Information System,
Personalization, OSGi, R-OSGi

1. INTRODUCTION
There is an important and rapidly growing body of work

on processing data streams using queries. However, compar-
atively little work has been done on the more practical, but
not less relevant, aspect of how to build and deploy com-
plex and distributed applications over data streams. In this
demo we make the point that this aspect is the one that
determines the real usability of a data stream system. The
demo inverts the terms in which most demos are performed.
Rather than showing what our system can do, it intends
to identify what functionality any data stream management

∗The work presented in this paper was supported (in part)
by the National Competence Center in Research on Mobile
Information and Communication Systems NCCR-MICS, a
center supported by the Swiss National Science Foundation
under grant number 5005-67322.

Copyright is held by the author/owner(s).
SIGMOD’07, June 12–14, 2007, Beijing, China.
ACM 978-1-59593-686-8/07/0006.

Skype

IMAP

Contacts Mail Sink

Call
Simulator

Phone
Call Mail

IMAP
server

Mail
Client

Skype
client

Call Ev.

Contacts

E-Mail

Call Mails

...

Figure 1: SkypeMail application setup.

system should provide. We then demonstrate how the pro-
totype platform XTream implements such functionality. For
this purpose we focus on personal data streams, i.e., quasi-
real-time data streams relevant to people, and two applica-
tions built on those streams. The data streams we consider
include, among others, E-Mails, information on phone calls,
SMS, information from the digital home (e.g., status of home
appliances, events in the home or office), and data from sen-
sor networks. We use these streams and the experience gath-
ered from building the applications to show that although
one can cast the problem in terms of continuous queries and
triggers, in practice querying ends up not being the biggest
problem. Instead, we show that acquisition, distributed pro-
cessing, personalization, and the integration with a wide va-
riety of devices are the real challenges. Furthermore, flexible
deployment and automatic software configuration, typically
outside the realm of database centric data streaming sys-
tems, are mandatory properties. The purpose of this demo
is to explore these issues, discuss some of the tools needed to
solve them, and demonstrate a prototype of a system that
implements some of these tools.

2. APPLICATIONS

2.1 Integration of VoIP and E-Mail
Personal data streams must be user-centric. The user

knows best what information to integrate and what is rel-
evant. Accordingly, our goal is to provide users with the
tools to do so by approaching the problem as a user-driven,
dynamic data stream integration problem. To illustrate the
types of interaction that such an integration implies, we have
built a data stream application that combines Skype with
IMAP to provide context to a phone call (Figure 1). Upon
receiving a Skype call, the name of the caller is extracted

1088



SH
Listener

SH Events

SH
Control

SH Commands

Filter

Auto
Control

Call Events

Emergency
SMS

Gateway

Channel from 
SkypeMail 
application

Figure 2: Smart Home setup.

from the meta-data associated to the call. Then the name
is looked up in a contact database and translated into an E-
Mail address. This E-Mail address is used to query an IMAP
server to retrieve the last ten E-Mails from and to that caller.
The E-Mails are displayed and directly available during the
call. Furthermore, new E-Mail from and to the caller will be
displayed immediately. The application is easily extensible
and its behavior can be dynamically changed (e.g., display
E-Mail from other sources, different criteria can be used to
select the E-Mails, list past Skype calls with all the persons
addressed in the E-Mails displayed, etc.).

This apparently simple application involves a rather com-
plex set of functionalities: event processing triggered from a
push stream (Skype producing an asynchronous data stream
announcing calls), data filtering to extract the user name,
ability to run a query on a database to retrieve the E-Mail
address, dynamic generation of a pull stream from the IMAP
server, and the conversion of this stream into a push stream
to keep the E-Mail list up-to-date. In addition, the ability to
define workflows with all these operations (similar to a busi-
ness process) and provide the right abstractions for the inter-
actions is crucial to implement such an application. Many
of these operations are not supported by existing systems
without ad-hoc programming. Nonetheless, this functional-
ity is very common in personal data stream applications and
should be supported from the start by the underlying data
stream management system.

2.2 Streams in the Smart Home
The second scenario involves a digital home setting. The

scenario is part of the Smart Home project, a cooperation
between ETH Zurich and Siemens AG, and part of an initia-
tive led by Siemens and German Telekom with a first house
in Berlin (www.t-com-haus.de) and several others currently
under construction in Dubai. The goal of the Smart Home
project is to integrate technologies for security, lifestyle, and
communication and make them available in the home. The
demonstration will illustrate the importance of rapid devel-
opment, integration, and deployment of personalized data
stream services across a wide variety of platforms and de-
vices. Figure 2 illustrates this application. Both the events
generated by the Smart Home and the interactions with the
appliances are realized with data streams. For example,
users can subscribe to certain events and receive a notifi-
cation on their mobile phone. Furthermore, control of the
smart home can be automated depending on the users’ pref-
erences. We will demonstrate this automation by integrating
the call information as it is used in the Skype/E-Mail ap-

plication described above. The goal is for the user to set up
different controls in the house that will react differently de-
pending on who is calling (e.g., the so called mood controls
determining light levels, opening or closing of blinds, etc.).
The Smart Home scenarios explore in more detail the prob-
lem of event management and the programming and deploy-
ment flexibility needed to interact with hardware appliances.
For instance, it encompasses user interfaces on different de-
vices, implying the need for support for distribution from
the start. In addition, and because there are several ways to
interact with the system, these interfaces must be synchro-
nized in order to avoid the user carrying out the same action
more than once. The application must be able to not only
consume streams, but also to react to incoming data streams
by generating additional streams, some of them with com-
mands for devices. Finally, the proliferation of devices to
control and be controlled opens up interesting opportunities
for optimizing the deployment of the different parts of the
processing chain. All these aspects are considered to be or-
thogonal or even irrelevant to data stream processing but,
the demonstration will show, are crucial components of the
underlying streaming platform.

3. DATA STREAM PLATFORM
These applications raise a number of non-trivial issues.

One of the main challenges is the lack of abstractions for
the operations and interactions that take place. In addition
to handling data streams (e.g., filtering), these applications
must, e.g., communicate with external data sources, manage
both push and pull interactions, integrate a number of dif-
ferent technologies, be able to evolve in unpredictable ways,
run seamlessly on different mobile and unreliable devices as
well as on servers, etc. The applications that will be demon-
strated show that, far from being orthogonal, these issues are
the ones defining the capabilities of a stream processing sys-
tem. In what follows we briefly present the XTream platform
used to build the applications described above. XTream is
an early prototype intended to test and illustrate different
technologies.

3.1 Processing Model
We use a data flow model similar to that of Ptolemy [2]

and also used by Aurora [1] or Telegraph [3]. The architec-
ture is based on SLETs and channels. An SLET (short for
streamlet) is a generic program with well defined interfaces
(including Web service-based ones) that consumes and pro-
duces data streams. This allows users not only to implement
their own operators in the shape of SLETs but to implement
SLETs with arbitrary processing logic and use them seam-
lessly in the system — one of the key differences between
XTream and conventional stream processing systems with a
predefined set of data manipulation operators.

SLETs are oblivious of each other. They communicate
through channels. Channels are abstract constructs mapped
to different concrete implementations (views over databases,
publish/subscribe mechanisms, gateways across nodes in dif-
ferent locations, repositories if the channel is persistent,
etc.). Developers and users only need to define the de-
sired properties and the underlying platform will choose the
best implementation. Channels can receive data from sev-
eral SLETs and several SLETs can read data from the same
channel. Channels can also be push or pull and support
callback operations that are forwarded back to the SLETs

1089



Figure 3: Smart Home simulator and PDA running
home control.

depositing data on the channel. Since SLETs and channels
are loosely coupled they can be dynamically connected and
disconnected. Furthermore, different properties can be as-
signed to SLETs and channels. For instance, two SLETs can
be synchronized so that if one SLET consumes a data item
from a channel, its companion SLET will not consume this
data item again. Providing these properties and having the
possibility of push, pull, and callback operations back to the
SLETs where data originated from are further differences
between XTream and conventional data stream processing
systems.

While SLETs have an input part, an output part, and a
processing core interacting with both parts, data sources and
sinks are wrapped with “half SLETs”. Their core interacts
with the external source or sink and the output or input
part interacts with the channels in XTream. Processing of
streams is done through data pipelines that alternate SLETs
and channels. Users build such workflows or pipelines by
connecting the inputs and outputs of channels and SLETs.

3.2 Implementation
The current prototype implementation of XTream covers

the main tools to address the requirements posed by the
applications described. Rather than extending a database
engine, we have opted for using an efficient processing plat-
form that also supports distribution. We find it easier to
add querying capabilities to that platform than to add flexi-
bility and software management functionality to a querying
engine. The implementation of the applications using our
prototype prove this to be the case but we expect this to be
one of the controversial points of the demonstration.

The core of XTream is implemented as OSGi [4] bundles.
An OSGi bundle contains classes and other resources as well
as a list of properties. It can be installed and removed at
runtime, thus providing support for dynamically adding and
removing components. A bundle can register services that,
in turn, can be retrieved and used by other bundles. A ser-
vice is an instance of a class registered with the framework’s
service registry under one or more interfaces and with a set
of properties which can be used to locate a specific service.

Figure 4: GUI for managing an XTream system.

SLETs and channels are both implemented as bundles
and services, especially facilitating their lifecycle manag-
ment as well as their interaction with each other and with
the XTream platform. By implementing the XTream plat-
form itself as OSGi bundles as well, the platform is modular,
and features (e.g., a monitoring module) can be added and
removed at runtime. Furthermore, we use some of the ser-
vices specified by OSGi. The current version of XTream
uses Concierge [5], our own OSGi implementation, and was
tested with Knopflerfish OSGi as well. Due to the nature of
OSGi, the current prototype is limited to interacting with
channels and SLETs that exist in the same virtual machine.
In order to implement distribution over multiple virtual—
and thus also physical—machines, we will use R-OSGi [6],
a system for transparent access to remote OSGi services,
which allows us to distribute the SLETs and channels among
multiple instances of an OSGi framework.

4. THE DEMONSTRATION
The demonstration will involve the applications Skype/E-

Mail integration and Smart Home events, control, and inte-
gration. The applications will be implemented as a workflow
of SLETs and channels on the XTream prototype platform.
They will be deployed in several laptops and mobile devices
(PDA, mobile phone). We will show how to quickly develop
such an application, how to evolve it, and how to deploy it
in a distributed setting. We invite all those attending the
demo to interact with the applications, customize them, and
build their own applications.

The Smart Home application runs on top of a simulator
(Figure 3). It will be used to gather and distribute events
related to changes in the home and to return commands to
the home either at the user’s request or as a result of event
processing implemented within the platform. We will also
show how to implement simple workflows as a way to illus-
trate how users may eventually interact with such a system.
During the demo we will use a simple GUI to generate chan-
nels, deploy SLETs, connect channels to SLETs, and move
SLETs to different devices (Figure 4).

5. REFERENCES
[1] D. J. Abadi et al. Aurora: a new model and architecture for data

stream management. The VLDB Journal, 12(2):120–139, 2003.

[2] J. Buck et al. Ptolemy: A Framework for Simulating and
Prototyping Heterogenous Systems. Int. Journal in Computer
Simulation, 4(2), 1994.

[3] S. Chandrasekaran et al. TelegraphCQ: Continuous Dataflow
Processing for an Uncertain World. In CIDR, 2003.

[4] OSGi service platform. http://www.osgi.org/.

[5] J. S. Rellermeyer and G. Alonso. Concierge: A Service Platform
for Resource-Constrained Devices. In EuroSys, 2007.

[6] J. S. Rellermeyer and G. Alonso. Services everywhere: OSGi in
Distributed Environments. In EclipseCon, 2007.

1090


