
Federated Data Processing and Exchange at Global Scale

Michael Duller Gustavo Alonso
Systems Group, Department of Computer Science, ETH Zurich

8092 Zurich, Switzerland
{michael.duller, alonso}@inf.ethz.ch

1. INTRODUCTION
In the last decade the continuing growth of the Internet

has enabled the interconnection of hundreds of millions of
computer and communication devices all over the world. Si-
multaneously, a wide variety of applications and services has
emerged to process and exchange data using technologies like
web servers, HTTP, and web browsers.

However, the way technology and the usage of this data is
evolving, is creating a conflict between user needs and exist-
ing data processing architectures. First, the web is no longer
a vehicle for message exchanges and sharing static content.
Web services, e-commerce, and Software as a Service (SaaS)
ideas have resulted in large data processing engines being
connected to the Internet as nodes of highly distributed ap-
plications. Second, the number of mobile and small devices
with networking capabilities is rapidly increasing. Devices
like smartphones, PDAs, smart toys, or sensor nodes have
become advanced enough to take part in the Internet. Third,
the amount of dynamically created and updated content is
steadily growing. Dynamic information is both created by
people and by devices. In many cases, the usefulness of this
data is often inversely proportional to its age and its impor-
tant to forward it to the user as soon as possible.

When taken all together, these developments raise very
difficult challenges and even introduce substantial limita-
tions from the user’s point of view. Current services, cloud
infrastructures, SaaS, and social networks are, for the most
part, highly centralized, impossible to interoperate, closed,
and to a certain extent static. In addition, there are obvi-
ous issues of privacy, access control, and customization that
cannot be overlooked in the long term.

In this short paper we present XTream, a platform for de-
veloping open data stream processing overlays. With XTream,
developers and even end users can easily program complex
data processing meshes by composing distributed resources
and processing steps. These meshes can be deployed at In-
ternet scale (we have a first prototype running on Planet-
Lab), in clusters (we have a distributed data stream process-
ing engine running standard benchmarks like Linear Road [1]),
and be combined with arbitrary data sources (e-mail, text
messages, RSS feeds, sensor data, etc.) and end devices
(mobile phones, PDAs, or desktops). XTream offers a com-
plete application model that treats data processing, data
storage, and data communication as orthogonal concerns.
This application model is supported by a lightweight middle-
ware infrastructure that hides the complexities of communi-
cation, deployment, interoperability, and data management
from the developer.

2. CHALLENGES
The main challenges for a platform like XTream are dy-

namism, heterogeneity, and federated operation at a global
scale.

We address the problem of dynamism by treating all data
as data streams. Data streams are very well suited for cap-
turing data from mobile devices, devices that are only pe-
riodically connected, mobile sources, and also for defining
the communication between distributed processing steps and
end consumers. Data streams can also be seen as packet for-
warding systems, which is of great help to cope with discon-
nected operation, high load variations, parallel processing of
large data volumes, and flexible routing of the data flows.

We address heterogeneity by imposing a rigid but open
and extensible programming model where all entities of the
system follow well defined APIs, hiding their implementa-
tion details. XTream is capable of mixing processing ele-
ments written in different programming languages and of
combining a wide variety of data management engines. The
APIs are rich enough to support sophisticated interactions
such as push or pull of the data, callbacks to data sources,
and dynamic reconfiguration.

We address federated operation through a strict separa-
tion of data storage, data processing, and data dissemina-
tion. In XTream, there are well defined entities in charge
of each one of these tasks. Programming a complex data
processing and dissemination mesh is done by composition
of these entities. There are no constraints on how these enti-
ties are deployed but the strict separation greatly facilitates
implementing access control, system boundaries, ownership,
performance optimization, integration of sources and end de-
vices, deployment as a flexible overlay (including deployment
on computing clouds), and supports the necessary scale-out.

XTream builds upon many ideas from peer-to-peer, over-
lays, data processing, data streaming infrastructures, data
flow languages (e.g., Dryad, Hadoop, MapReduce), and Web
2.0 ideas. A very important component of XTream is the
software engineering aspects intended to facilitate applica-
tion development. The key contribution of XTream is that
it is a platform for developing applications that combines
all these ideas rather than focussing on the advantages of a
single approach.

3. XTREAM: PLATFORM AND MODEL
To tackle the challenges of applications that federatively

process and exchange data we propose XTream, a platform
and a model for these applications. At the heart of XTream
lies the model, which generalizes the data stream processing

πChannel Sink



Source

Source

…

Channel π Channel

Sink

…

Channel
Channel



Channel

π Channel

π

π Channel

Figure 1: Data processing model of XTream

model beyond traditional streaming applications to encom-
pass almost any application that exchanges data in a push
or pull manner. The model is defined at different layers of
abstraction ranging from a high level application building
model down to an implementation model (see Figure “Lay-
ered details of abstraction” in the poster). In addition, we
implemented a prototype of the XTream runtime platform,
which implements the model and is continuously revised and
extended.

3.1 Data Processing Model
Figure 1 illustrates the data processing model, which de-

fines channels and slets (short for streamlets) as its entities.
Three kinds of slets process data (π-slets, depicted as ovals)
and adapt data sources (α-slets, depicted as half ovals) and
data sinks (ω-slets, depicted as half ovals). Slets can be
parametrized to allow for easy customization and reusabil-
ity of the same kind of slet in different places. Channels
buffer and forward data between slets and thus decouple
producing from consuming slets. Slets can access data from
a channel in a push or pull manner. In the resulting mesh of
slets and channels, data is processed as it flows from sources
on the left to sinks on the right.

3.2 Implementation Model
The implementation model (see Figure “Implementation

model” in the poster) specifies how components interact with
each other. XTream is designed as a SOA. Every individual
component provides well defined services, which are used
to interact with it. In the figure, services involved in data
exchange with other components are depicted as thick, red
bars. In addition, every component also exposes a manage-
ment service that allows to parametrize, start, or stop the
component.

In addition to channels and slets defined by the data pro-
cessing model, the implementation model introduces connec-
tors as third entity. They form a level of indirection between
channels and slets and provide for access to channels in a re-
mote framework. Thus, they incorporate the communication
aspect in the model.

Access to a remote channel is realized through a pair of
matched connector halves, of which one is registered on the
framework where the channel resides and the other in the
framework where the channel is accessed from. The latter
part buffers data as proxy for the channel to provide local
buffer access for connected slets and allow for optimizations
like proactive or reactive caching. Every pair of instances of
XTream frameworks that interact with each other maintain
a single connection through which they exchange manage-
ment information as well as data that is flowing through
remote connectors.

3.3 Prototype Implementation
The prototype of the XTream platform is implemented

using OSGi [5] and Java. Channels, slets, and connectors
and the implementation of the XTream runtime platform
itself are designed in a modular way and make heavy use
of loose coupling through dynamically bound services. This
provides for flexibility and extensibility of the platform and
facilitates development and management of the system.

Despite the fully dynamic binding of services, the imple-
mentation incurs hardly any overhead on the data path, as
the service objects are proactively cached using a service
tracker. Additionally, the expression over service properties
used in the service tracker is always of constant length and
can be constructed solely from a component’s local proper-
ties, which is illustrated in Figure “Component interaction”
in the poster and helps both consistency and performance.

4. PROJECT STATUS
One main application area we are looking at is personal in-

formation processing. After initial experiments in this area,
which we have successfully demonstrated in [4], we have
defined a first model and implemented a prototype of the
platform. Recently, we reported on the status of personal
information processing in [3].

To test XTream’s ability to cope with a widely distributed
setup of potentially unreliable nodes, we deployed a syn-
thetic application that simulates personal information pro-
cessing on 200 PlanetLab nodes. PlanetLab is an ideal
testbed for XTream as it provides us not only with Internet
scale distribution but also with an environment that is very
similar to people’s personal computers in terms of other pro-
cesses contending for resources and spontaneous shutdown
or crash of individual nodes. We ran the application for 24
hours and concluded from the results that XTream can cope
well with such a dynamic and widely distributed environ-
ment.

At the moment we are evaluating the system under the
Linear Road benchmark, which represents a conventional
stream processing workload, to analyze the overhead in-
curred by the platform. We chose the implementation of [2],
wrapped their MXQuery engine as an slet and their storage
implementations as channels, and rebuilt the same work-
flow they used. Our implementation was able to sustain
the same load factor like the original implementation, as
XTream added only little overhead.

5. REFERENCES
[1] A. Arasu, M. Cherniack, E. F. Galvez, D. Maier,

A. Maskey, E. Ryvkina, M. Stonebraker, and
R. Tibbetts. Linear Road: A Stream Data Management
Benchmark. In VLDB, 2004.

[2] I. Botan, P. M. Fischer, D. Florescu, D. Kossmann,
T. Kraska, and R. Tamosevicius. Extending XQuery
with Window Functions. In VLDB, 2007.

[3] M. Duller and G. Alonso. XTream: An Open,
Distributed Platform for Processing Personal
Information Streams. In WDDDM, 2009.

[4] M. Duller, R. Tamosevicius, G. Alonso, and
D. Kossmann. XTream: Personal Data Streams. In
SIGMOD, 2007.

[5] OSGi Alliance. OSGi Service Platform.
http://www.osgi.org/.

Federated Data Processing and Exchange at Global Scale

Michael Duller, Gustavo Alonso / Systems Group / Department of Computer Science / ETH Zurich

Prototype: High-performance, Dynamic Component Interaction

•  proactive tracking of service objects of interest
•  no overhead (e.g., lookup) during normal operation (data path)
•  incremental overhead if bindings actually change
•  tracker expression
•  always of constant length
•  created solely from component’s local service properties

Implementation Model

•  component interaction through services
•  dynamic binding at runtime
•  well-defined boundaries

•  connectors as additional level of indirection
•  proxies for remote channels
•  windows (buffers) for connected slets

…

…

…

…

In Out In Out

Conn. Conn.

In Out In Out

Conn. Conn.
In Out

Channel

OutputPort InputPort SletMain Service Buffer Impl. Classes

Slet Slet

…

…

Conn.

Channel

objectClass = OutputPort
service.id = 28
xt.cid = port.1
xt.conn = conn.4
…

objectClass = CICO
service.id = 32
xt.cid = conn.4
xt.chan = chan.7
…

objectClass = ChannelInput
service.id = 11
xt.cid = chan.7
…

Conn.

objectClass = CICO
service.id = 19
xt.cid = conn.2
xt.chan = chan.7
…

objectClass = OutputPort
service.id = 27
xt.cid = port.0
xt.conn = null_cid
…

objectClass = CICI
service.id = 18
xt.cid = conn.2
…

objectClass = CICI
service.id = 31
xt.cid = conn.4
…

Tracker expression:
(&(objectClass=CICO)
 (xt.chan=chan.7))

Tracker expression:
(&(objectClass=CICI)
 (xt.cid=conn.4))

Slet

SELECT AVG(priority)
FROM requests TUMBLING EVERY 60s

requests

Implementation

Data processing model

Abstraction provided by
application builder

Implementation model

Application: Integration of VoIP and E-Mail

•  display last E-Mails exchanged with person talking on Skype
•  plain and distinct application that covers a set of key challenges

Skype

IMAP

Contacts Mail Sink

Call
Simulator Phone

Call Mail

IMAP
server Mail Client

Skype
client

Call Events

Contacts

1. incoming call
on Skype

E-Mail

Call Mails

...

2. lookup caller’s
E-Mail address

3. fetch 10 most
recent E-Mails

4. output updated
E-Mail list

The XTream Approach

•  generalization of data stream processing model
•  separation of processing (slet), storage (channel), and communication

(connector) concerns into distinct elements of the model
•  direct interaction between peers

Today’s Options for Data Processing and Exchange
Database / data stream engines
•  big and complex
•  limited set of operators

Cloud Computing, SaaS
•  bring data into the cloud
•  transfer results back

Peer to peer systems
•  focus on data exchange
•  limited/no processing model

Data Parallel Cluster Computing
•  batch job scheduling
•  restricted processing model

 unapt for small, local applications processing dynamic or push data
 unapt for connecting independent instances of these applications

Goal
Programming model and runtime environment for
•  processing and integration of dynamic and heterogeneous data
•  easy implementation of simple as well as sophisticated applications
•  federated operation of distributed, independent applications

Application: Friends’ Recent Photo Exchange
•  different access patterns (push/pull)
•  aggregation of all photo feeds into one

