
Consistently Applying Updates to Compositions of Distributed OSGi
Modules ∗

Jan S. Rellermeyer Michael Duller Gustavo Alonso
Systems Group, Department of Computer Science,

ETH Zurich, 8092 Zurich, Switzerland
{rellermeyer, michael.duller, alonso}@inf.ethz.ch

Abstract
Updating software at runtime is a challenge that covers var-
ious aspects of software design and runtime systems. The
OSGi Alliance has proposed and standardized a runtime sys-
tem for composing Java applications out of modules, the
OSGi Framework. The possibility to update modules at run-
time and thereby dynamically change the application has
been an intrinsic design decision of the framework architec-
ture. With recent approaches to extend the OSGi model from
single Java virtual machines to distributed systems, however,
updates no longer only affect a single machine in the system.
The specifications of OSGi and the upcoming proposals for
distributed OSGi services do not answer the question how to
consistently apply updates in such environments. In this pa-
per, we explore a solution based on our R-OSGi system. We
show how to extend the existing (local) OSGi update mech-
anism to consistently apply updates to multiple nodes of a
distributed OSGi application.

Categories and Subject Descriptors K.6.m [Management
of Computing and Information Systems]: Miscellaneous;
D.3.3 [Programming Languages]: Language Constructs and
Features; C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems

General Terms Design, Management

Keywords OSGi, Modules, Updates, R-OSGi

∗ The work presented in this paper was supported (in part) by the National
Competence Center in Research on Mobile Information and Communica-
tion Systems NCCR-MICS, a center supported by the Swiss National Sci-
ence Foundation under grant number 5005-67322.

Copyright is held by the author/owner(s).
HotSWUp’08, October 20, 2008, Nashville, Tennessee, USA.
ACM 978-1-60558-304-4/08/10.

1. Introduction
Modular and component systems have gained tremendous
momentum in recent times. They finally facilitate the vision
of code reusability, which once drove the adoption of object-
oriented languages. Furthermore, they appear ideal for build-
ing extensible systems that can expose configurable behavior
without requiring constant restarts of the entire software. In-
stead, modules can be dynamically added and other modules
can begin to interact with the extensions provided that they
are designed to do so. Once uninstalled, the system falls back
to the original behavior. These modular architectures are in
particular appealing for long-running systems such as appli-
cation servers. However, they also pose the problem of life
cycle management of software modules. One particular chal-
lenge is how to apply software updates to the modules. There
is a clear demand for updating at runtime and with minimal
interruption for systems with high availability requirements.
However, applying updates at runtime in a consistent way is
particularly intricate due to the fact that modules typically
have dependencies between each other. Hence, updating a
module can have impact on other parts of the system.

Among the competing frameworks for building applica-
tions out of modular components, OSGi [10] is the most
advanced in terms of runtime support for software updates.
OSGi builds atop the Java virtual machine and adds a layer
for running and maintaining software modules. Applications
for OSGi have to take into account the dynamism of module
compositions, e.g., that single modules can be removed or
updated to a newer version at any time, and must react ac-
cordingly. The runtime itself facilitates consistent updates by
deciding if an update is safe—no other modules depend on a
piece of code which is updated—or unsafe—there are such
dependencies that can possibly lead to an incompatibility af-
ter the update.

Indeed, this behavior is a coarse-grained approach to the
update problem. It does not take into consideration the ef-
fects of updates on type safety (discussed, e.g., in [8]) or in-
terface compatibility (discussed, e.g., in [3]), which can par-
ticularly occur through partial updates. Instead, the model
aims at replacing entire modules by new versions and deal-



ing with the resulting effects on other modules which are
coupled through dependencies. In this sense, OSGi can be
considered to be a minimalistic runtime system for more
sophisticated and fine-granular approaches to software up-
dates.

With the currently ongoing efforts to extend the OSGi
standard towards distributed systems (OSGi RFC 119) [9],
the problem of updates, however, can no longer be solved
by updating single nodes in the network individually. In-
stead, such distributed compositions require consistent up-
dates across different nodes, following the paths of the dis-
tributed module dependencies. In this paper, we discuss the
update strategies for local OSGi frameworks and present a
solution that guarantees the same consistency when applying
updates that affect multiple distributed OSGi frameworks.

2. The OSGi Framework
In OSGi, modules (called BUNDLES) are conventional JAR
files which have additional meta-information in the manifest.
Most importantly, bundles explicitly declare their package
imports from other bundles and which of their own pack-
ages they are willing to expose to other bundles. The OSGi
runtime (called the FRAMEWORK) can thus load each bun-
dle through a separate classloader and delegate the access of
shared code imported from other bundles. In contrast to tra-
ditional Java applications, which operate on a flat classloader
hierarchy, the OSGi framework creates a partly connected
graph of dependent classloaders.

Thereby, OSGi is able to give the user of the framework
full control over the lifecycle of the single bundles. For in-
stance, the framework facilitates adding new bundles at run-
time as well as removing bundles, which restores a previous
state of the system by disposing of the corresponding bun-
dle classloader. In order to enable bundles to deal with the
dynamism and the runtime changes, OSGi issues events of
various types to subscribed listeners.

Besides sharing packages, which causes a tight coupling
among bundles, OSGi provides the construct of services,
which enables loose coupling. A service is a Java class that
implements one or several interfaces. Services are registered
in a central service registry and other bundles can use the
names of the interfaces for a service lookup.

Great emphasis has been put on providing ways of con-
sistently updating applications running atop an OSGi frame-
work. The framework internally keeps track of which bun-
dles are exporting packages and which bundles are con-
suming these exported packages through imports. Delega-
tions between exporting and importing classloaders are es-
tablished when resolving the bundles and tracked as wires.
Once wired, a delegation remains immutable1. The rationale
behind the OSGi update strategy is to keep bundles in a func-
tional and consistent state. Therefore, actions which indi-

1 Except when rewired through a package refresh, which, as discussed later,
requires explicit intervention

rectly affect running bundles by changing shared code are
deferred until a framework user explicitly triggers a pack-
age refresh2. The two actions which potentially lead to such
changes are the uninstallation of bundles and bundle up-
dates, as they both remove (old) packages.

2.1 Uninstalling Bundles
The uninstallation of a bundle is only considered safe if no
exported package is in use by other bundles at the point in
time when the action occurs. This is trivially true for bundles
not exporting any package. If the action is not safe the
classloader has to be marked for removal but the packages
will remain accessible to existing consumers until a package
refresh for all or only the affected packages is triggered.
All packages not in use are removed from the system by
removing the corresponding package information from the
internal package database of the framework. Subsequently,
bundles arriving after the uninstallation of a bundle no longer
be wired to an uninstalled bundle any more.

2.2 Updating Bundles
Bundle updates follow the same pattern. Packages which are
not exported or are not used by downstream consumers are
immediately updated. For packages in use, the classloader
hosting the original version of the bundle has to remain ac-
cessible for exactly these packages. Newly appearing con-
sumers of packages which were previously not in use will
be wired to the classloader serving the new code and hence
they will see the new version. Figure 1 shows such an up-
date where packages 1 and 4 are in use by other bundles and
therefore preserved after the update.

Regardless of the safeness of the update, an UPDATED
event is signaled to those bundles which have opted in
for being informed about state changes by registering a
BUNDLELISTENER with the framework.

Package 1 Package 2

Package 3

imports

imports

Package 4 Package 3’

Package 2’
Package 1

imports

Package 4

Bundle Before Update Bundle After Update

imports

Figure 1. Update of a Bundle with Exported Packages in
Use

2.3 Refreshing Packages
Packages can be explicitly refreshed through the PACK-
AGEADMIN service, which is a service described in the
core specifications [10]. Even though this service is optional,

2 In Release 3 of the specifications. Release 4 allows multiple versions of
packages to coexist in disjoint classloader spaces



most existing OSGi framework implementations provide it
by default. A refresh can be triggered by any bundle3 in-
stalled on the framework. Examples of such a bundle are a
console or a GUI which facilitate user intervention.

With each refresh, an initial set of bundles that need
to be refreshed is passed as an argument to the package
admin. This can be either a fixed array of bundle objects, or
null, which is defined to be all bundles in the system. From
this initial set of packages, the package admin service then
determines the exported packages which have been marked
for removal or which have a deferred version update. For
this (smaller or equal) set of packages for which a refresh
actually has an effect, the package admin recursively builds
the transitive closure of all bundles that are dependent due to
an incoming wire; i.e., if a bundle imports a package from
a bundle that is subject to a refresh, it gets refreshed as well
and thus all its exports are also marked to be refreshed. The
result is a set of packages (and thereby a set of exporting
bundles) thats are affected by the refresh action.

To effectively release all references to old packages, the
refresh process itself first stops all affected bundles in re-
verse start level and installation order. Exceptions occur-
ring during this process of stopping the bundles are signaled
through framework events to subscribed listeners but other-
wise ignored. After the last bundle has left the active state,
stale packages (as results of uninstallations) are removed
by disposing of the classloader, and deferred package up-
dates are applied by swapping the classloader reference to
the classloader providing the updated version of a bundle.
Subsequently, all bundles which have not been uninstalled
are restarted corresponding to their startlevel and original
installation order. The result is a system which now entirely
operates on the refreshed packages. Any reference to unin-
stalled packages or previous versions are dropped. However,
bundles that previously were active may no longer be re-
solved because required package dependencies could have
been uninstalled.

3. Distributed OSGi
Recently, there have been efforts to extend the OSGi model
to interconnect services running on distributed OSGi frame-
works. Systems like NEWTON [11] or the OSGi-internal
RFC 119 describe solutions which operate on the service
layer and provide the remote access to services over the net-
work. These approaches are limited because they solely op-
erate on the level of services and ignore the bundle layer.
They require all clients of remote services to have the corre-
sponding service interfaces and custom types referenced by
the interfaces to be available. In terms of code updates, this
causes a significant problem. Updates on the remote service
bundle remain undetected by clients. However, they can lead
to inconsistencies within the distributed service composition

3 When running with permissions enabled, only bundles with appropriate
permissions can trigger a refresh.

when the interface or types referenced by the interfaces un-
dergo a change.

In contrast, R-OSGI [14] explicitly deals with the mod-
ule layer. R-OSGi embeds the service proxy into self-
contained proxy bundles. In addition to shipping the ser-
vice interface to the client, R-OSGi uses static dependency-
analysis on the service to determine the minimal set of
classes of a service bundle that would make the interface
resolvable on an arbitrary client device. These classes are
additionally shipped to the client, materialized in the proxy
bundle, and thus provided to the client runtime (type injec-
tion). Thereby, a client of a service that is accessing a service
proxy sees exactly the part of the remote bundle which is ex-
posed by the remote service (Figure 2).

Service 1 Service 2Service 1

BundleRemote Proxy

Figure 2. Remote Proxies for OSGi Services with R-OSGi

Furthermore, the proxy bundle partly inherits the package
import behavior. Out of the original package imports, the
proxy must import exactly those packages that are required
to resolve the classes that are injected into the proxy bundle.
Therefore, the package import set of the proxy is a subset
of the import set of the original bundle. The proxy exports
exactly those packages that were exported by the original
bundle and that have at least one member in the form of a
class injected into the proxy bundle.

As a consequence, the proxy bundle generated on the
client side can have dependencies that have to be resolved in
order to have a working service. In the recent development
version, R-OSGi does not assume that all bundle dependen-
cies of a service are present on each client node. If a package
import is not resolvable on a client, R-OSGi creates a clone
of the bundle that resolved the package import of the origi-
nal bundle to mimic the behavior of a single local framework
(Figure 3).

Service 1 Service 2Service 1

BundleRemote Proxy

Dependency Bundle Clone Dependency Bundle

imports from imports from

Figure 3. Update Problem for Managed Proxy Dependen-
cies



However, this approach poses the challenge of consis-
tently handling updates occurring on the original service
bundle. The OSGi framework itself is not capable of deal-
ing with distribution, hence, it does not provide any support
for distributed bundle updates.

4. Distributed Updates
Distributed updates are more complex than local updates.
First, local updates are handled by the framework which has
full knowledge about package versions, wires, etc. The dis-
tributed update is handled through the distribution software
which itself is just a bundle and has no direct access to the in-
ternal state of the framework. Second, local updates happen
on the granularity of entire bundles. The distribution soft-
ware, however, primarily operates on the granularity of ser-
vices. Therefore, it generates stripped down proxy bundles
that only provide the service interface and necessary type in-
jections, as discussed in the previous section. As a result, up-
dates to the service bundle cannot be directly applied to the
proxy bundles. The distribution software has to handle this
case specifically. Furthermore, as discussed in section 2.2,
the update can potentially be applied by the local framework
in two steps, the immediate and the deferred part. The mid-
dleware has to mirror both parts at the right time to the client
nodes. Third, consistency is harder to achieve when multi-
ple peers are involved. Atomicity is, as we will show, not
possible without additional knowledge about the update.

4.1 Detecting the Update
Since the distribution middleware sits on top of the frame-
work as a regular application, it can only detect bundle up-
dates through the events they generate. Unfortunately, the
events signaled by the framework do not give sufficient in-
formation about the exact update procedure. After a suc-
cessful update of a bundle, a BUNDLEEVENT of type UP-
DATED is issued. As a payload, it contains the informa-
tion on which bundle the update happened but not what the
precise effect of the update is. The whole picture has to be
constructed by correlating such events with feedback infor-
mation gathered through interaction with the package ad-
min. The package admin provides an interface for retrieving
information about exported packages of a bundle and their
versions. The prerequisite for detecting an update, however,
is that the distribution middleware has sufficient informa-
tion about the previous state of the bundle to determine the
set of packages that have been changed. However, this as-
sumes that updates follow a strict versioning discipline, i.e.,
the package version is actually incremented in the metadata
whenever a class of the package has changed. The other pos-
sibility would be to track the state of individual classes by
calculating hashes over the entire bytecode or certain parts
of the class as done for serial version UIDs in the Java Seri-
alization Protocol [17]. Since updates which do not change
the package versions can have side effects (e.g., breaking

dependent bundles) even in the case of a local OSGi frame-
work, the R-OSGi middleware was not implemented to sup-
port per-class tracking of updates.

4.2 Preparing the Update
Unfortunately, the middleware has no access to the bundle
that caused a local update. This version might or might not
be persisted by the framework in its private storage but there
is no reliable and framework implementation-independent
way of accessing this data. With the information about
changed packages, however, the middleware can reconstruct
an update bundle. The corresponding bytecode can be re-
trieved from the classloader. For the state of the bundle after
the package refresh, this is easier because all packages and
classes are then provided by the same classloader. For re-
constructing the state right after the update event, there are
potentially two classloaders that refer to the bytecode of the
classes. One is the old classloader which serves the deferred
packages and one is the new classloader which serves the
updates version.

If the update affects dependency bundles, this generated
update bundle can be directly applied. For the service bun-
dle, the generated update bundle contains more classes than
the proxy bundle. However, the type injection property is an
invariant that is expected to hold after the update. Hence, the
same code analysis algorithm can be used that is already part
of R-OSGi for determining the type injection set. Applied to
the new state of the bundle after update, the code analysis
generates the corresponding update bundle.

4.3 Applying the Update Consistently
In order to apply the updates atomically, the distribution soft-
ware has to take on the role of the package admin on the
corresponding client peers. It has to execute the algorithm
described in 2.3 but introduce a distributed consensus be-
tween the stop and start phases that involves a possible roll-
back. Thereby, the semantics of a local OSGi update is con-
sistently mirrored to a set of client peers.

However, even with this effort, applying the update atom-
ically in a global sense is not possible. The distribution soft-
ware can only react to events and the update event is gener-
ated after the update has already been successfully applied
locally. It therefore can only observe an update but not influ-
ence (e.g., abort or delay) it any more. There are two ways of
fixing this behavior and turning the entire distributed update
into a single atomic transaction. One is to alter and intercept
the operation of the framework. If the distribution software
can influence the outcome of the initial update, it can achieve
a global atomic update semantic. However, non-invasiveness
against the standardized framework implementations was
a clear design decision for the R-OSGi middleware. The
other approach is to apply the updates through an external
distribution-aware interface and not directly through the lo-
cal framework. In past work, we developed a deployment
tool [13] for R-OSGi which facilitates the decomposition of



an application within the Eclipse [4] IDE and the deploy-
ment to a set of machines through a graphical user interface.
The same infrastructure can be used to apply updates to bun-
dles to all affected peers atomically because it enables the
distribution software to act before the update is applied on
the local framework.

5. Related Work
Several authors have discussed the challenges of runtime up-
dates in different domains in a number of research projects,
e.g., [7], [5], [6], [16], [2].

The Ginseng system [8] allows to update software with-
out stopping and restarting it. It generates dynamic patches
that can be applied to a running application with the help of
the runtime system. We do not require updates to fully run-
ning applications but instead leverage the standardized OSGi
model to only stop and restart those parts of the application
consistently that are actually affected by the update.

The author of [12] identifies software evolution and thus
updates to software at runtime as an important property of
distributed applications in particular. She proposes to con-
sider updates as cross-cutting concerns and therefore express
them as aspects which are woven into the application at run-
time. We also see handling of updates as a concern of the
middleware layer and we agree that proper means and sup-
port for software evolution are a necessity for distributed
systems.

In contrast to the approach presented in this paper, the au-
thors of [1] research systems for which it cannot be assumed
that updates can happen for all nodes at once. Instead, the
authors discuss a system that gradually updates nodes.

Research has also been conducted on using different ver-
sions of code at the same time and letting old and new code
interact [15]. Coexisting versions of code can also arise in
our approach when old packages are still in use by other
bundles. However, the typical focus of applications written
in OSGi is to eventually remove all old uses of old versions
of packages and only execute one version of code throughout
the system.

6. Conclusion
We introduced OSGi’s module layer and its code depen-
dency management. Then we presented R-OSGi, which pro-
vides interaction with remote OSGi services not only on the
service layer but also incorporates the module layer by han-
dling dependencies through type injections and dependency
bundle clones. As a result, R-OSGi can track updates to
modules and update injected dependencies or dependency
bundle clones on remote nodes respectively resulting in con-
sistent updates to compositions of distributed OSGi mod-
ules. If perfect atomicity for both remote service clients and
local service clients is a requirement, an external update co-
ordinator like the R-OSGi Deployment Tool can be used.

References
[1] S. Ajmani, B. Liskov, and L. Shrira. Modular software

upgrades for distributed systems. In ECOOP ’06: European
Conference on Object-Oriented Programming, July 2006.

[2] A. Baumann, G. Heiser, J. Appavoo, D. D. Silva, O. Krieger,
R. W. Wisniewski, and J. Kerr. Providing dynamic update
in an operating system. In ATEC ’05: Proceedings of the
USENIX Annual Technical Conference, pages 32–32, 2005.

[3] A. Chakrabarti, L. de Alfaro, T. Henzinger, M. Jurdzinski,
and F. Mang. Interface compatibility checking for software
modules. In CAV ’02: Proceedings of the 14th International
Conference on Computer Aided Verification, 2002.

[4] Eclipse Foundation. The Eclipse Project. http://www.

eclipse.org.

[5] D. Gupta, P. Jalote, and G. Barua. A formal framework for
on-line software version change. IEEE Trans. Softw. Eng.,
22(2):120–131, 1996.

[6] M. Hicks and S. Nettles. Dynamic software updating. ACM
Trans. Programming Language Systems, 27(6):1049–1096,
2005.

[7] I. Lee. Dymos: a dynamic modification system. PhD thesis,
The University of Wisconsin - Madison, 1983.

[8] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol. Practical
dynamic software updating for c. SIGPLAN Not., 41(6):72–
83, 2006.

[9] E. Newcomer and T. Dieckmann. Distributed OSGi - External
Services and Service Discovery, 2008.

[10] OSGi Alliance. OSGi Service Platform, Core Specification,
Release 4, Version 4.1, 2007.

[11] Paremus Ldt. Newton. http://newton.codecauldron.

org, 2006.

[12] S. C. Previtali. Dynamic updates: another middleware
service? In MAI ’07: Proceedings of the 1st workshop on
Middleware-application interaction, pages 49–54, 2007.

[13] J. S. Rellermeyer, G. Alonso, and T. Roscoe. Building,
Deploying, and Monitoring Distributed Applications with
Eclipse and R-OSGi. In ETX ’07: Fifth Eclipse Technology
Exchange Workshop, 2007.

[14] J. S. Rellermeyer, G. Alonso, and T. Roscoe. R-OSGi:
Distributed Applications Through Software Modularization.
In Proceedings of the ACM/IFIP/USENIX 8th International
Middleware Conference, 2007.

[15] P. Sewell. Modules, abstract types, and distributed version-
ing. In POPL ’01: Proceedings of the 28th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, pages 236–247, 2001.

[16] G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu.
Mutatis mutandis: Safe and predictable dynamic software
updating. ACM Trans. Programming Language Systems,
29(4):22, 2007.

[17] Sun Microsystems. Java Object Serialization Specification,
1997.


