
Using Non-Java OSGi Services for Mobile Applications ∗

Jan S. Rellermeyer Michael Duller Gustavo Alonso
Department of Computer Science

ETH Zurich
8092 Zurich, Switzerland

{rellermeyer, dullerm, alonso}@inf.ethz.ch

ABSTRACT
OSGi is a popular software engineering approach for build-

ing complex software systems out of reusable Java modules.
The OSGi framework describes an infrastructure for man-
aging the modules at runtime and composing loosely-couples
applications through services. With R-OSGi, we have ex-
tended the scope of OSGi from single applications to net-
works of applications consisting of distributed services. How-
ever, the OSGi model is entirely Java-centric and not triv-
ially transferable to other languages, without losing general-
ity and interoperability. In this demonstration, we show an
application which uses OSGi services written in languages
like TinyOS.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed Applications; D.3.3 [Programming
Languages]: Language Constructs and Features—Modules,
Packages; H.4 [Information Systems Applications]: Mis-
cellaneous

General Terms
Design, Languages

Keywords
OSGi, R-OSGi, Middleware, Sensor Networks

1. INTRODUCTION
Modular software systems have gained large momentum

in the past. One reason is the growing complexity of modern
software systems. Systems built out of modular components

∗The work presented in this paper was supported (in part)
by the National Competence Center in Research on Mobile
Information and Communication Systems (NCCR-MICS), a
center supported by the Swiss National Science Foundation
under grant number 5005-67322.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MiNEMA’08, March 31-April 1, 2008, Glasgow, Scotland
Copyright 2008 ACM XXX-X-XXXXX-XXX-X/XX/XX ...$5.00.

are easier to control and to maintain. Another reason is the
increased availability of reusable open-source implementa-
tions for common problems. A modular approach greatly
simplifies the integration of different out-of-the-box compo-
nents. Although the modular design has its origin in soft-
ware architecture, it has been shown, for instance, in [5], to
be a feasible starting point for building distributed systems
by distributing a system along the boundaries of modules.

1.1 OSGi
OSGi [8] is an open standard that describes how to de-

velop software modules in Java. Additionally, it specifies a
runtime infrastructure, the so-called Framework, to load
new modules and manage the lifecycle of running modules
at runtime. Due to the lifecycle management, OSGi was ini-
tially popular with embedded and other long-running sys-
tems. Recently, OSGi has obtained more attentiveness in
the area of large, server-side applications. By making the de-
pendencies between modules explicit, OSGi can dynamically
compose the modules at runtime without losing the type
consistency within the VM. This, however, typically leads
to tight coupling between dependent modules. To overcome
this limitation and to allow for more dynamic compositions,
OSGi facilitates the loose coupling of modules through ser-
vices. Every plain Java object can be a servive when it is
published under a set of service interfaces. Clients can re-
trieve services from a central service registry by the name
of the interface and, optionally, filtered by predicates over
service attributes.

1.2 R-OSGi
R-OSGi [9] is the conceptual extension of the OSGi model

to distributed systems. Through a transparent middleware,
OSGi services from remote peers can be accessed as if they
were local services. R-OSGi is capable of building dynamic
proxies for remote services which show the same behavior
and are synchronized with the state of the original service
on the other machine. Therefore, it is possible to rapidly
prototype systems in a local setting and without regarding
distribution. The resulting modules can subsequently be
deployed to different machines and connected through R-
OSGi remote service invocations. Since OSGi does not pose
any restriction on services and in fact accepts potentially
every Java object to become a service, R-OSGi has to deal
with the same miscellaneousness that is expressible in Java.
It hence uses the Java serialization protocol in certain stages
of the protocol, for instance, to ship the arguments for a
remote service call.

1.3 Language independent OSGi
In order to use the principles of OSGi for new kinds of ap-

plications outside the Java microcosms, it deems eligible to
have OSGi-like interactions with modules authored in lan-
guages others than Java. Preferably, these non-Java mod-
ules should be able to seamlessly communicate and inter-
operate with traditional OSGi frameworks. Since non-Java
modules can typically be expected to run at least in other
address spaces than an instance of a Java VM, the use of
the R-OSGi protocol can be an option even when all mod-
ules reside on the same machine. A particular challenge of
language-independent OSGi is indeed to integrate different
languages without resorting to the least common denomi-
nator of all languages. This has traditionally been pursued
with language-independent middleware like CORBA [7], which
is—without further effort of custom type mapping—restricted
to a defined set of supported types. More recently, web ser-
vice [1] approaches like, for instance, SOAP [11], have reim-
plemented this idea by using the XML type system. For a
sophisticated model like OSGi, however, these approaches
oppose to the idea of perpetuating the full expressiveness
that OSGi facilitates within the Java language.

2. SERVICES IN OTHER LANGUAGES
In traditional systems, the main load caused by an inter-

action between a service and a client rests with the service
provider side. It is thus typically assumed that the service
provider is a more powerful machine than the client, as in
traditional client/server settings. R-OSGi, in contrast, has
the property that the requirements for offering a service are
smaller than for consuming a service, which might appear
counterintuitive at first. The reason is that R-OSGi gener-
ates the dynamic proxies on the client side. This requires the
availability of certain language features, like, for instance,
dynamic loading and reflection. Conversely, a service can
be provided with a minimum of language support. For in-
stance, in [10], we have implemented OSGi services in lan-
guages like C, or even on sensor nodes running TinyOS [4].
As mentioned before, R-OSGi requires the serialization of,
for instance, arguments of service method calls and this has
traditionally been a reason to assume that such protocols
can only be used among Java peers.

The reason why R-OSGi services are possible without a
Java VM involved is that a service provider has to under-
stand only as much of the Java serialization protocol as it
actually needs. This involves, for instance, arguments of
service methods and types used in service properties. How-
ever, these types are known at compile time. Hence, the
serialization support for these types can be generated in any
language if the corresponding Java types are known. The
resulting custom serialization is bundled together with an
R-OSGi protocol handler, a Java interface of the service as
a blob, and the service implementation. Through the ab-
straction of interfaces in OSGi, the actual implementation
of a service does not make a difference to clients of the ser-
vice. With the same consequence, a service in R-OSGi can
be written in any language as long as it behaves from outside
like a Java service implementing the corresponding service
interface.

In the subsequent sections, we briefly present implemen-
tations for two non-standard Java platforms, CLDC and
TinyOS.

2.1 CLDC
The connected limited device configuration is the smallest

configuration of Java platforms and runs on the KVM [12].
Typically, additional packages are bundled together with
CLDC base packages into profiles like the MIDP that is
available on most recent mobile phones nowadays and runs
application bundles referred to as MIDlets. Due to limita-
tions of the KVM, it is not possible to run OSGi on top
of CLDC. In order to make services provided by CLDC de-
vices available to other devices running OSGi and R-OSGi,
we overcome the missing custom classloading and serializa-
tion support by automatically generating specific MIDlets.
These MIDlets contain a stripped-down implementation of
the R-OSGi protocol, custom serialization and deserializa-
tion code, and the interfaces and implementations of the
services. Figure 1 illustrates how these resources are assem-
bled into a MIDlet.

Figure 1: Generation of MIDlet.

2.2 TinyOS
Similar to the CLDC approach, we enable access to ser-

vices provided by TinyOS based sensor nodes. A stripped-
down version of the R-OSGi protocol implemented in NesC
is assembled with custom serialization and deserialization
code and the actual service implementations into a TinyOS
application.

NesC itself also employs the concept of interfaces as well
as it supports parametrized calls which can be leveraged for
assembling multiple services into a TinyOS application. By
adhering to a common interface we defined, the services can
be accessed uniformly from the stripped-down R-OSGi pro-
tocol and dispatching of calls to a particular service happens
directly through parametrized calls.

3. DEVICE-SPECIFIC TRANSPORTS
In the original implementation, instances of R-OSGi re-

lied on TCP/IP transport for communication. Small and
embedded devices, however, often do not provide TCP/IP
transport since it significantly increases memory and pro-
cessing footprint. In addition, the flexibility and powerful
features that TCP/IP provides on top of the network in-
terface are often not required when interacting with small
devices. Hence we enhance R-OSGi to be able to use alter-
native transport protocol, that are more suitable for small
devices. Below, we introduce two alternative transport pro-
tocols for R-OSGi.

3.1 Bluetooth
We implement native Bluetooth [2] transport for R-OSGi

on top of the L2CAP transport layer, which provides reliable

Gateway GatewaySensor
Node

Sensor
Node

Light Light

P
resence

D
isplay

Room 1
Exhibit A

...

Light today:

next: Room 2...

Info

802.15.4
TCP/IP

over WLAN

Bluetooth

Room 1 Room 2

Figure 2: Demonstration Setup.

end-to-end communication. Besides the actual transport,
we also facilitate service discovery using Bluetooth’s native
service discovery mechanism SDP [3]. For this purpose, we
map OSGi service interface names and their properties to
SDP entries in a way that directly allows to search over
SDP UUIDs when searching for a particular service. The
details of this mapping are presented in [10].

3.2 802.15.4 Transport
Many sensor node platforms, including the Tmote Sky [6],

feature a 802.15.4 compliant radio. We implement a sim-
ple transport protocol on top of TinyOS’ 802.15.4 radio
stack that uses acknowledgements, timeouts, and retrans-
missions to provide reliable end-to-end communication. Fur-
thermore, we implement the same transport protocol on
TinyOS’ Java SDK libraries and enable it as transport for
R-OSGi. Thereby we can use it for communication with ser-
vices implemented on TinyOS as well as use it as transport
protocol between two instances of R-OSGi.

4. DEMONSTRATION
We will use the technologies introduced in the previous

sections in the demonstration. The scenario is set in a build-
ing where visitors walk through the rooms and carry their
mobile phones with them. For the demonstration, which is
schematically depicted in Figure 2, we use two rooms, with-
out limiting generality.

The mobile phones run a MIDlet on top of their CLDC
Java environment that provides two services that can be dis-
covered and accessed through the mobile phones’ Bluetooth
radio. One service is a presence service which simply identi-
fies the user of the mobile phone and the second service is a
display service which provides access to the phone’s display,
i.e., it allows to display content on the mobile phone.

In each room, a sensor node is deployed which runs the
TinyOS implementation of a light service as defined in List-
ing 1. The method getLight accepts an output stream and
an interval. When the method is called on the Tmote, it
will start sampling its light sensor every interval seconds
and write the sampled value to the output stream os. The
service can be accessed using the 802.15.4 transport.

The third entity involved in the scenario is a room gate-
way, of which we deploy one in each room. The gateways
run a full Java VM hosting an OSGi framework with R-OSGi
and a module that consumes and orchestrates the services
provided by phones and sensor nodes. Furthermore, it in-
teracts with the other gateway.

Listing 1: Light service interface.
public interface LightSe rv i c e {

public void getL ight (OutputStream os ,
int i n t e r v a l) ;

}

When a visitor wanders through the rooms and thus comes
within the range of the Bluetooth radio of a room gate-
way, the gateway discovers the presence service of the mo-
bile phone and can identify the user. If this user subscribed
to receive information on its mobile phone, the gateway will
access the display service provided by the user’s phone and
display static information about the room (e.g., exhibits) as
well as dynamic information gathered from the sensor nodes
like, e.g., the light sampled in this room during the day. Ad-
ditionally, when the gateway can interact with gateways of
neighboring rooms, it will also display abstract information
about the neighboring rooms.

5. REFERENCES
[1] G. Alonso, F. Casati, H. A. Kuno, and V. Machiraju.

Web Services - Concepts, Architectures and
Applications. Springer, 2004.

[2] Bluetooth Special Interest Group. Bluetooth.
http://www.bluetooth.com, 1998.

[3] E. Gryazin. Service discovery in bluetooth.

[4] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler,
and K. S. J. Pister. System Architecture Directions for
Networked Sensors. In Architectural Support for
Programming Languages and Operating Systems, 2000.

[5] G. C. Hunt and M. L. Scott. The Coign Automatic
Distributed Partitioning System. In Proceedings of the
3rd Symposium on Operating Systems Design and
Implementation (OSDI 1999), 1999.

[6] Moteiv. Tmote sky. http://www.moteiv.com/, 2005.

[7] Object Management Group, Inc. Common Object
Request Broker Architecture: Core Specification, 2004.

[8] Open Service Gateway Initiative.
http://www.osgi.org.

[9] J. S. Rellermeyer, G. Alonso, and T. Roscoe. R-OSGi:
Distributed Applications Through Software
Modularization. In Proceedings of the
ACM/IFIP/USENIX 8th International Middleware
Conference, 2007.

[10] J. S. Rellermeyer, M. Duller, K. Gilmer, D. Maragkos,
D. Papageorgiou, and G. Alonso. The Software Fabric
for the Internet of Things. In Proceedings of the 1st
International Conference on the Internet of Things,
2008.

[11] Simple Object Access Protocol.
http://www.w3.org/TR/soap/.

[12] Sun Microsystems, Inc. J2ME Building Blocks for
Mobile Devices: White Paper on KVM and the
Connected, Limited Device Configuration (CLDC),
May 2000.

